

Example Candidate Responses Paper 3

Cambridge IGCSE[™]
Combined Science 0653

Cambridge O Level Combined Science 5129

For examination from 2019

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2019

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction	4
Question 1	6
Example Candidate Response – high	6
Example Candidate Response – middle	
Example Candidate Response – low	
Question 2	13
Example Candidate Response – high	
Example Candidate Response – middle	
Example Candidate Response – low	
Question 3	
Example Candidate Response – high Example Candidate Response – middle	
Example Candidate Response – Initidie	
Question 4	
Example Candidate Response – high	
Example Candidate Response – middle	
Example Candidate Response – low	28
Question 5	31
Example Candidate Response – high	31
Example Candidate Response – middle	
Example Candidate Response – low	35
Question 6	38
Example Candidate Response – high	38
Example Candidate Response – middle	
Example Candidate Response – low	
Question 7	45
Example Candidate Response – high	
Example Candidate Response – middle	
Example Candidate Response – low	
Question 8	52
Example Candidate Response – high	
Example Candidate Response – middle	
Example Candidate Response – low	
Question 9	
Example Candidate Response – high	
Example Candidate Response – middle	
Example Candidate Response – low	

Introduction

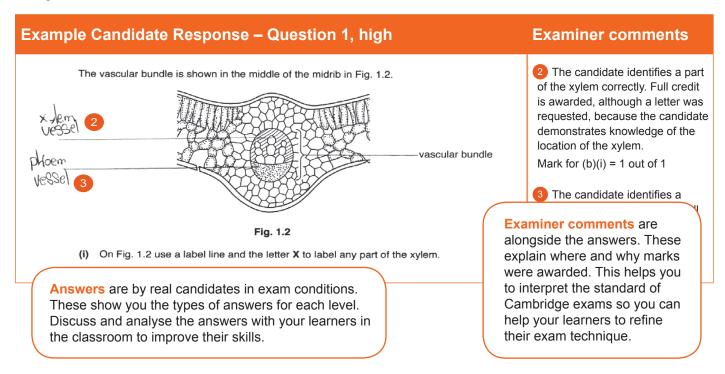
The main aim of this booklet is to exemplify standards for those teaching Cambridge IGCSE Combined Science 0653 and Cambridge O Level Combined Science 5129, and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen from June 2019 scripts to exemplify a range of answers.

For each question, the response is annotated with a clear explanation of where and why marks were awarded or omitted. This is followed by examiner comments on how the answer could have been improved. In this way, it is possible for you to understand what candidates have done to gain their marks and what they could do to improve their answers. There is also a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work with examiner commentary. These help teachers to assess the standard required to achieve marks beyond the guidance of the mark scheme. Therefore, in some circumstances, such as where exact answers are required, there will not be much comment.

The questions and mark schemes and pre-release material used here are available to download from the School Support Hub. These files are:


June 2019 Question Paper 31

June 2019 Paper 31 Mark Scheme

Past exam resources and other teacher support materials are available on the School Support Hub: www.cambridgeinternational.org/support

How to use this booklet

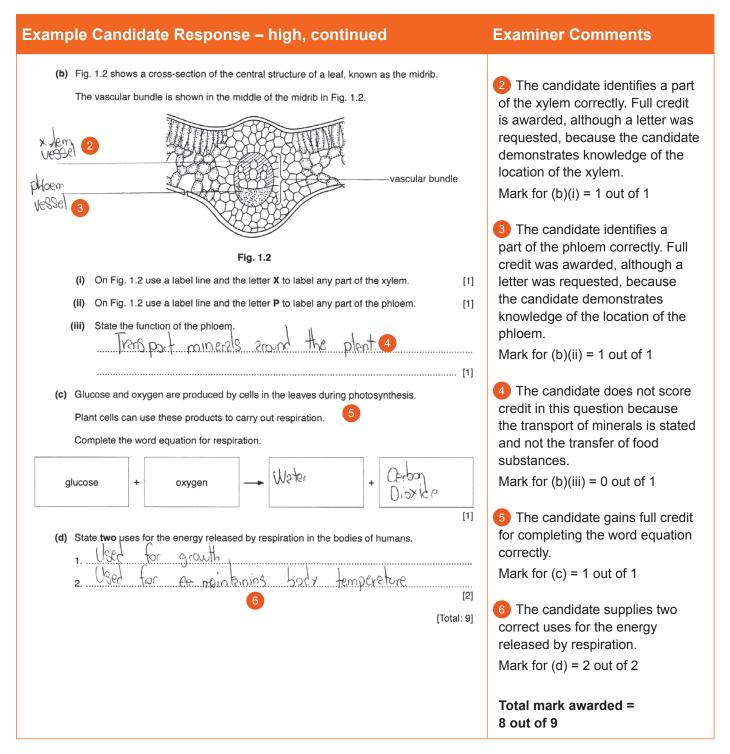
This booklet goes through the paper one question at a time, showing you the high-, middle- and low-level response for each question. The candidate answers are set in a table. In the left-hand column are the candidate answers, and in the right-hand column are the examiner comments.

How the candidate could have improved their answer

• This candidate could have improved their answer to **(b)(iii)** if they had known that the vascular bundle contained the phloem and xylem. Candidates should have been able to identify the phloem and xylem in a leaf. The labelled vascular bundle in Fig. 1.2 should have helped in this question.

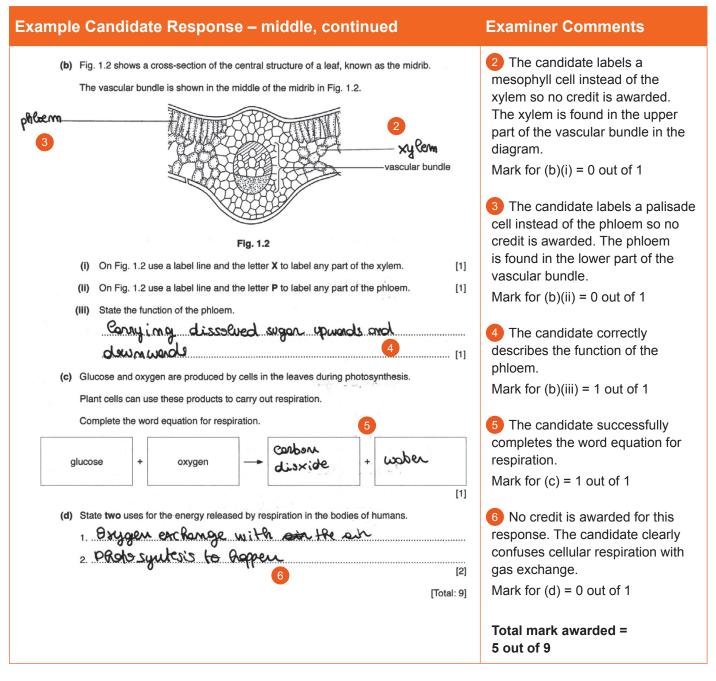
This section explains how the candidate could have improved each answer. This helps you to interpret the standard of Cambridge exams and helps your learners to refine their exam technique.

Common mistakes candidates made in this question


• (a) Some candidates labelled the cell layers of the leaf instead of the parts of the cells as required. These candidates did not read the stem of the question correctly.

Often candidates were not awarded marks because they misread or misinterpreted the questions.

Lists the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes and give them the best chance of achieving the available marks.


Question 1

The candidate should have read the question carefully and followed the instructions given. In **(b)(i)** and **(b)(ii)**, a letter was requested, not a name. This was not penalised on this occasion, but it could have been important in a different question. The candidate could have improved their answer in **(b)(iii)** by stating that the function of the phloem was to transport food substances in the plant.

Example Candidate Response – middle 1 (a) Plants make their own food in leaves by the process of photosynthesis. Fig. 1.1 shows a cross-section of a leaf: Fig. 1.1 Name cell parts A, B and C shown in Fig. 1.1. A NUCLUS B CRASSIONS C Nocuse 1 The candidate identifies the three cell parts correctly. Mark for (a) = 3 out of 3

- This candidate could have improved their answer to **(b)(iii)** if they had known that the vascular bundle contained the phloem and xylem. Candidates should have been able to identify the phloem and xylem in a leaf. The labelled vascular bundle in Fig. 1.2 should have helped in this question.
- (d) They could have improved their answer if they had referred to cellular respiration. The uses of the energy released by respiration were clearly shown in the syllabus. The candidate's answer did not describe uses of energy. Instead, they were referring to consequences of gaseous exchange.

Example Candidate Response – low Examiner Comments (a) Plants make their own food in leaves by the process of photosynthesis. Fig. 1.1 shows a cross-section of a leaf. 1 The candidate gains credit for identifying **A**, the nucleus, correctly. No credit is awarded for label B. The candidate confuses mitochondria with chloroplasts. Fig. 1.1 Mitochondria are not mentioned in Name cell parts A, B and C shown in Fig. 1.1. the specification and are not seen A Nacleus 1 in this level of magnification of the leaf. B Mcccondna The candidate is not awarded c <u>Cytoplasi</u> credit for label C because they

have incorrectly identified the vacuole of the cell as cytoplasm.

Mark for (a) = 1 out of 3

Example Candidate Response – low, continued

(b) Fig. 1.2 shows a cross-section of the central structure of a leaf, known as the midrib.

The vascular bundle is shown in the middle of the midrib in Fig. 1.2.

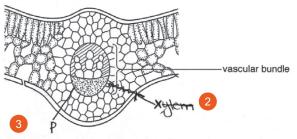
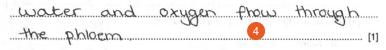



Fig. 1.2

- (i) On Fig. 1.2 use a label line and the letter X to label any part of the xylem. [1]
- (ii) On Fig. 1.2 use a label line and the letter P to label any part of the phloem. [1]
- (iii) State the function of the phloem.

dioxide

(c) Glucose and oxygen are produced by cells in the leaves during photosynthesis.

Plant cells can use these products to carry out respiration.

Complete the word equation for respiration.

5

glucose + oxygen - dans 15

(d) State two uses for the energy released by respiration in the bodies of humans.

[Total: 9]

[1]

Examiner Comments

2 The candidate does not gain credit for labelling the xylem because they have labelled the lower epidermis.

Mark for (b)(i) = 0 out of 1

3 The candidate is awarded credit for labelling the phloem correctly.

Mark for (b)(ii) = 1 out of 1

4 No credit is awarded because the candidate does not state that phloem transports food substances.

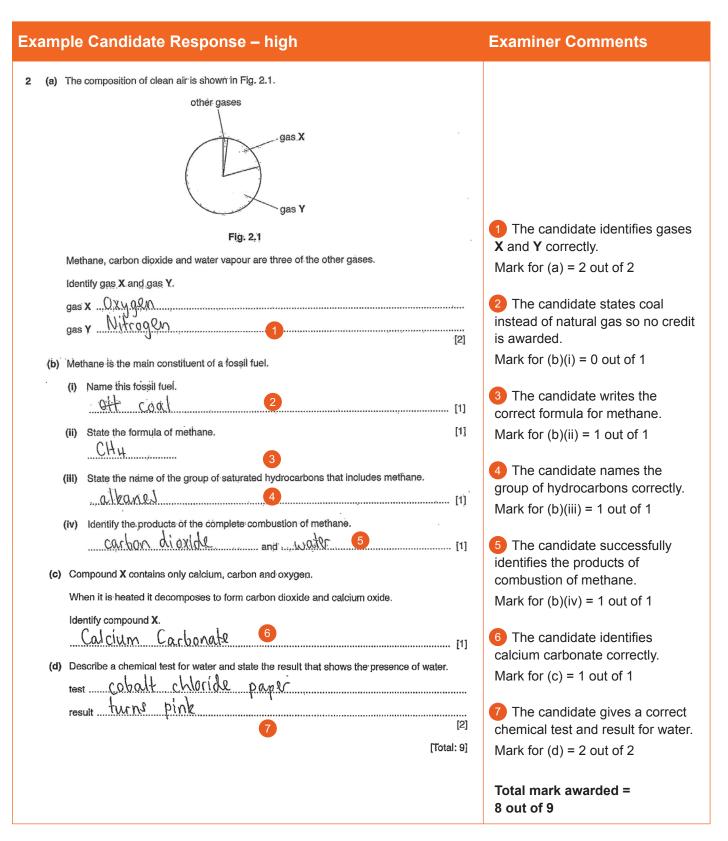
Mark for (b)(iii) = 0 out of 1

5 The candidate completes the equation for respiration correctly.

Mark for (c) = 1 out of 1

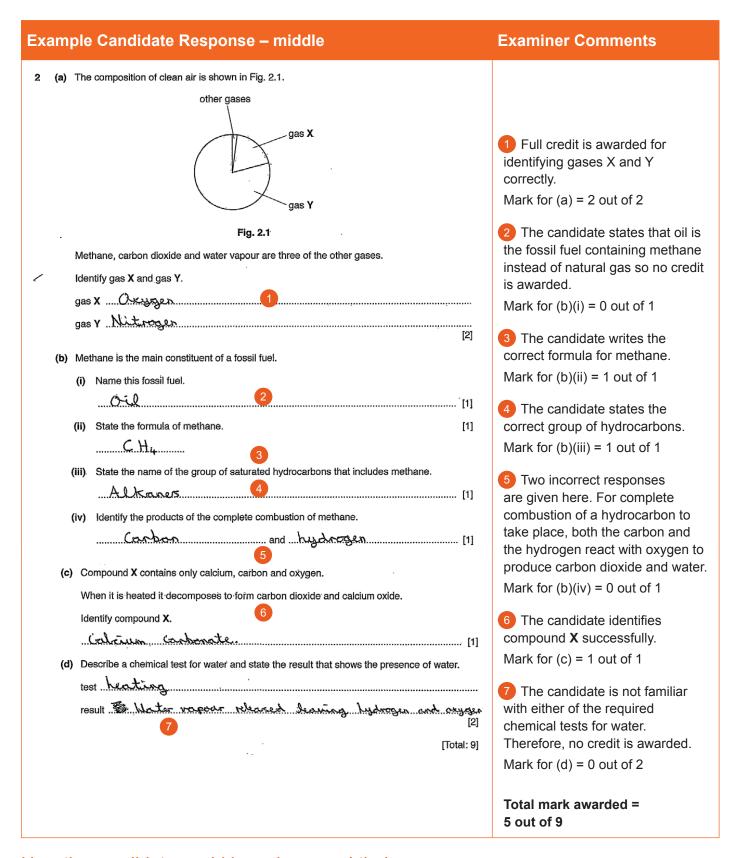
6 The candidate does not gain credit in this answer. Although 'heat' is stated there is no explanation of how the heat (energy) is used.

Mark for (d) = 0 out of 2


Total mark awarded = 3 out of 9

- (a) The candidate could have improved their answer by learning to recognise the parts of the plant cell as were stated in the syllabus. In Fig. 1.1, the chloroplasts were clearly visible, with more being found in the palisade cells; this should have enabled **B** to be answered correctly. With better knowledge of plant cell structure, the candidate would have excluded the cytoplasm from their answer to **C**. In these cells, the cytoplasm surrounded the large central vacuole of the cell.
- **(b)(i)** The candidate could have improved their answer having known that the xylem was contained in the vascular bundle, and then identified the xylem tissue from its characteristic appearance in Fig. 1.2. In **(b)(ii)**, the label line for **P**, the phloem, should have extended further into the tissue to have made the candidate's intention clear. The line, as it stood, was on the borderline of being acceptable.
- (d) The candidate acknowledged that heat energy was released, but they should have described the role of heat
 energy in maintaining body temperature. For the second mark, the candidate could have stated growth, muscle
 contraction or protein synthesis.

Common mistakes candidates made in this question


- (a) Some candidates labelled the cell layers of the leaf instead of the parts of the cells as required. These candidates did not read the stem of the question correctly.
- Many candidates could not identify the xylem and phloem in Fig. 1.2. Most of the incorrect responses showed
 labels for the phloem and xylem at various locations outside the vascular bundle. A minority of incorrect answers
 had the phloem and xylem labelled the wrong way round.
- **(b)(iii)** The function of the phloem was not widely known. Most candidates stated incorrectly that the function of the phloem was to transport water and mineral ions. The use of the word 'nutrients' was considered ambiguous and was not acceptable because its use usually refers to mineral ions.
- **(c)** A minority of candidates gave formulae instead of words to complete the equation. Words should be used when requested to complete a word equation.
- Many candidates interpreted respiration as breathing in (d), and wrote responses which explained how the exhaled products of breathing could be useful to plants. Other responses were too vague to gain credit, for example 'to keep you alive', 'to increase the rate of body processes'.

Question 2

How the candidate could have improved their answer

The candidate could have improved their answer in **(b)(i)** by stating that the fossil fuel containing methane was natural gas.

- The candidate could have improved their answer in (b)(i) by naming the correct fossil fuel, natural gas.
- (b)(iv) They could have named carbon dioxide and water as the products of complete combustion of methane.
- The correct description of one chemical test for water, and its positive result would have enabled credit to be awarded for (d). There was a choice of two tests stated in the syllabus, one with copper(II) sulphate and the other with cobalt(II) chloride.

Example Candidate Response – low

2 (a) The composition of clean air is shown in Fig. 2.1.

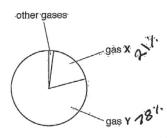


Fig. 2.1

Methane, carbon dioxide and water vapour are three of the other gases.

ldentify,gas X and gas. Y .	
gas xOX 4990	
gas y Nitropen	
9	[2]
Methana is the main constituent of a fossil	fuel

(b) Methane is the main constituent of a fossil fuel.

(i)	Name this fossil fuel.		
	Gos		[1].
(li)	State the formula of methane.	4 - C - C - H	[1]
(iii)	State the name of the group of saturate	ed hydrocarbons that includes methane.	
	Alkanes 4		[1]

(c) Compound X contains only calcium, carbon and oxygen.

When it is heated it decomposes to form carbon dioxide and calcium oxide.

Identify compound X.

Carbonate

[1]

(d) Describe a chemical test for water and state the result that shows the presence of water.

Examiner Comments

1 The candidate identifies both gases correctly.

Mark for (a) = 2 out of 2

2 Gas alone is not sufficient. The response must explicitly state natural gas.

Mark for (b)(i) = 0 out of 1

3 The candidate states the formula for ethane, not methane, so they are not awarded credit.

Mark for (b)(ii) = 0 out of 1

4 The candidate names the group of hydrocarbons successfully.

Mark for (b)(iii) = 1 out of 1

The candidate gives two incorrect responses for the products of complete combustion of methane. During complete combustion of a hydrocarbon the hydrogen and carbon both react with oxygen to give water and carbon dioxide respectively.

Mark for (b)(iv) = 0 out of 1

6 The candidate is not awarded credit here because they omit to include calcium in the name of their formula.

Mark for (c) = 0 out of 1

7 The candidate does not describe either of the chemical tests for water as stated in the specification.

Mark for (d) = 0 out of 2

Total mark awarded = 3 out of 9

- This candidate could have improved their answer in **(b)(i)** by giving the full name of the fossil fuel containing methane, natural gas. Gas on its own was not sufficient.
- **(b)(ii)** The response given by the candidate was similar to that required, showing the candidate had some knowledge of the alkanes. However, the response given was ethane, not methane. If the correct formula had been given the candidate would have improved their answer.
- It was stated in the syllabus that when methane was burned in air, carbon dioxide and water were produced. The candidate could have improved their answer to (b)(iv) by stating these two products.
- Part (c) could have been improved if the candidate had included calcium in the name of their compound to have given the correct answer, calcium carbonate.
- Knowledge of either of the chemical tests for water, with copper(II) sulphate or cobalt(II) chloride would have enabled the candidate to be awarded credit.

Common mistakes candidates made in this question

- (a) The most common mistake was naming the gases the wrong way round. These responses labelled gas **Y** as oxygen and gas **X** as nitrogen.
- Very few candidates stated that natural gas was the fossil fuel containing large amounts of methane. Coal and oil were the most common incorrect responses for **(b)(i)**. Petroleum was also seen in smaller numbers.
- **(b)(ii)** There were many candidates who did not know the formula for methane. Common incorrect answers included Me, CHMe and different variations of these letters.
- There were many candidates who were unfamiliar with the term alkanes requested in (b)(iii). There were many
 incorrect answers, which showed no pattern. Several candidates referred to groups in the Periodic Table or nonmetals, not taking into account that the hydrocarbons are compounds, not elements.
- Common mistakes in (b)(iv) were stating that carbon dioxide was the only product of combustion, and that oxygen
 gas was a product. Other mistakes, seen less frequently, included stating that hydrogen or heat energy were
 products of combustion.
- The most common errors in **(c)** included answers that did not contain all of the elements listed. Examples of these compounds were calcium oxide and carbon dioxide.
- Most candidates were unfamiliar with the chemical tests for water, as stated in the syllabus. The most common errors were boiling point and freezing point measurements, but since these were physical properties, they were not acceptable for (d).

Question 3

Example Candidate Response – high **Examiner Comments** Fig. 3.1 shows a whale swimming underwater. The candidate is awarded credit for their response. The force of gravity acting on the mass of the whale gives it weight, which is also a correct answer. Fig. 3.1 Mark for (a)(i) = 1 out of 1 (a) (i) The force arrows labelled P and Q show the vertical forces acting on the whale. The arrow labelled S is pointing Gravile in the correct direction and touches the whale, showing that (ii) The whale is swimming at constant depth, using a force R to push itself forward. the frictional force is acting directly On Fig. 3.1 draw a force arrow to show the frictional force opposing the motion of the whale, and label it S. on the whale. (iii) When force R is 500 N, the whale moves at a constant speed of 5.0 km/h. Mark for (a)(ii) = 1 out of 1 State the value of force S. force **s** =100 3 3 No credit is awarded. When the 500-5 = 100 speed is constant the forces on (iv) Force R decreases to 400 N. Force P increases. the whale are balanced, so force **S** is 500N. Describe how these two changes affect the motion of the whale. Mark for (a)(iii) = 0 out of 1 4 The candidate is awarded The whale will begin to rise to the Surface. [2] full credit here. They have considered the effects of the two forces separately and stated two changes to the motion of the whale. Mark for (a)(iv) = 2 out of 2

Example Candidate Response - high, continued **Examiner Comments** (b) The whale does work against the friction of the water as it swims at a constant speed and a constant depth on a journey. 5 Partial credit is awarded for this State the two quantities needed to calculate the work done by the whale on its journey. response. Distance is correct, but they have stated time as the other quantity. The force against friction (ii) Complete the sequence of energy changes that occur on the whale's journey. is the other quantity required to energy in the whale calculate the work done. energy of the whale Mark for (b)(i) = 1 out of 2 thermal energy transferred to the water. [2] 6 The candidate is awarded (c) The whale makes a sound to call to another whale 9000 m away. full credit in this question. The chemical energy in the muscles of The second whale hears the call 6.0 seconds later. the whale is transferred to kinetic Calculate the speed of sound in water. energy as the whale moves. Show your working. Mark for (b)(ii) = 2 out of 2

7 The candidate is awarded full credit for substituting the distance, 9000 m, and the time, 6s, into the equation to give the correct

answer, 1500 (m/s).

Mark for (c) = 2 out of 2

Total mark awarded =

9 out of 11

[Total: 11]

How the candidate could have improved their answer

- The candidate could have improved their answer in (a)(iii) by ignoring the speed of 5.0 km/h given in the stem. The forces on the whale must have been balanced to have given a constant speed, so the value of **S** must have been 500 N.
- **(b)(i)** The candidate wrote *distance* and *time* for the two quantities needed to calculate the work done; time was not correct. Their answer could have been improved by stating *force* instead *time*.

Example Candidate Response – middle

Examiner Comments

3 Fig. 3.1 shows a whale swimming underwater.

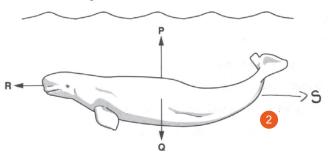
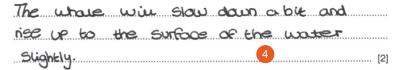


Fig. 3.1

(a) (i) The force arrows labelled P and Q show the vertical forces acting on the whale.

(ii) The whale is swimming at constant depth, using a force R to push itself forward.


On Fig. 3.1 draw a force arrow to show the frictional force opposing the motion of the

(iii) When force R is 500 N, the whale moves at a constant speed of 5.0 km/h.

State the value of force S.

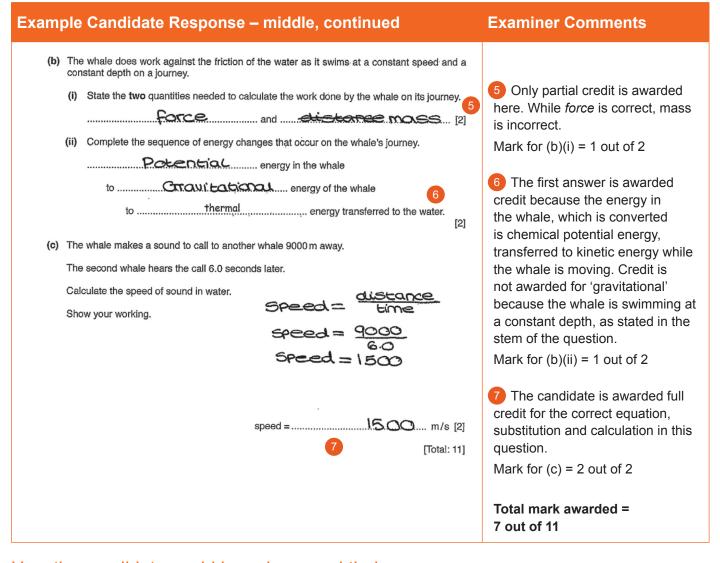
(iv) Force R decreases to 400 N. Force P increases.

Describe how these two changes affect the motion of the whale.

1 The candidate is not awarded credit for this response. Gravitational energy is not a force. Mark for (a)(i) = 0 out of 1

2 The force arrow does not touch the whale; therefore, no credit is

Mark for (a)(ii) = 0 out of 1


awarded.

Correct answer. The candidate has shown knowledge that forces R and S must be equal and opposite for the whale to move at constant speed.

Mark for (a)(iii) = 1 out of 1

4 The candidate is awarded full credit for considering the effect of each force separately.

Mark for (a)(iv) = 2 out of 2

- (a)(i) The candidate could have improved their answer by stating the correct force. The force of gravity was acting on the mass of the whale to give it weight, so either *gravity* or *weight* would have been acceptable.
- The candidate would have improved their response in (a)(ii) by drawing the tail of the arrow of force S so that it touched the whale. As it stood, force S was acting on the water near the whale.
- The candidate could have improved their answer to **(b)(i)** by leaving their original answer, distance. The force was the frictional force against which the whale was moving, and the distance the whale travelled was also needed to calculate how much work was done.
- **(b)(ii)** The whale transferred chemical (potential) energy into kinetic energy as it moved. The chemical energy was contained in glucose and this was released during respiration to enable the muscle contraction needed for the whale to move. Therefore, the candidate could have improved their answer by stating that the (chemical) potential energy in the whale was transferred to kinetic energy.

Example Candidate Response – low

Examiner Comments

3 Fig. 3.1 shows a whale swimming underwater.

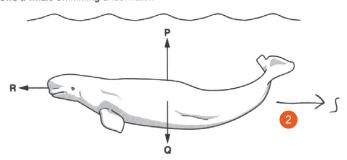
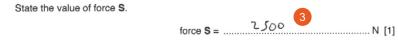
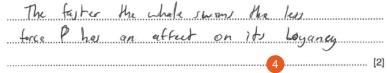


Fig. 3.1


(a) (i) The force arrows labelled P and Q show the vertical forces acting on the whale.

(ii) The whale is swimming at constant depth, using a force R to push itself forward.


On Fig. 3.1 draw a force arrow to show the frictional force opposing the motion of the whale, and label it **S**. [1]

(iii) When force R is 500 N, the whale moves at a constant speed of 5.0 km/h.

(iv) Force R decreases to 400 N. Force P increases.

Describe how these two changes affect the motion of the whale.

1 The candidate is awarded credit for a correct answer.

Mark for (a)(i) = 1 out of 1

2 Although the arrow is pointing in the correct direction it does not touch the whale so no credit is awarded.

Mark for (a)(ii) = 0 out of 1

3 The candidate is not awarded credit in this question. The opposing forces, **R** and **S** are equal and opposite if the whale is moving at a constant speed.

Mark for (a)(iii) = 0 out of 1

The candidate is not awarded credit here. This response states that the whale swims faster instead of slower. They have also not considered the effects of the two forces separately, and the effect of an increase in Force **P**.

Mark for (a)(iv) = 0 out of 2

Example Candidate Response – low, continued Examiner Comments (b) The whale does work against the friction of the water as it swims at a constant speed and a constant depth on a journey. (i) State the two quantities needed to calculate the work done by the whale on its journey. 5 The candidate gives units instead of the terms force and distance. (ii) Complete the sequence of energy changes that occur on the whale's journey. Mark for (b)(i) = 0 out of 2 energy in the whale tineta potential energy of the whale 6 The candidate is awarded credit for stating that it is chemical energy transferred to the water. [2] energy in the whale that is converted to enable the whale (c) The whale makes a sound to call to another whale 9000 m away. to move. Therefore, the second The second whale hears the call 6.0 seconds later. answer should be kinetic energy Calculate the speed of sound in water. so no credit is given for this part of the question. Show your working. Mark for (b)(ii) = 1 out of 2 9000- 6 = 1500 The candidate is awarded full credit in this question. Although the equation given is incorrect, in this case, this is ignored because the candidate has carried out a [Total: 11] correct calculation and arrived at the correct answer. Mark for (c) = 2 out of 2

Total mark awarded =

4 out of 11

- The candidate could have improved their answer in (a)(ii) by drawing the tail of the arrow of force S touching the whale. The candidate's response showed force S acting on the water near the whale.
- The candidate could have improved their answer in (a)(ii) by stating that Force S was 500N. The candidate had done an unnecessary calculation to arrive at an incorrect answer. If the whale was going at a constant speed, the forces R and S would have been equal and opposite.
- (a)(iv) The effects of each of the forces **R** and **P** should have been considered separately since they were at 90° to each other. The response could have been improved by the correct interpretation of the information about force **R**, which should have caused the whale to slow down, not to speed up.
- (b)(i) The candidate would have improved their answer by giving their response in words and not units.
- The candidate could have improved their response to **(b)(ii)** by stating that the chemical energy was converted to kinetic energy in the whale. This was the type of energy the whale had due to its movement.
- **(c)** The candidate could have improved their answer by stating the correct equation, in this case speed = distance / time.

Common mistakes candidates made in this question

- The most common mistake seen in (a)(i) were 'gravitational potential energy'. This was not a force.
- Candidates who were not awarded credit in (a)(ii) frequently did not make the tail of the arrow touch the whale. The tail of the arrow must have touched the whale to have shown that the force was acting on the whale, and not on the water near the whale.
- (a)(iii) The most common mistakes were calculations done including the speed of 5.0 km / hr, either multiplying or dividing. Therefore, instead of the correct answer of 500 N many candidates wrote either 100 N or 2500 N.
- Common errors in (a)(iv) included candidates who just considered the effect of the change of one of the forces, not of both. Less frequently, candidates interpreted the information incorrectly, to make the whale speed up or sink.
- (b)(i) The most common error made by candidates was stating 'speed' as one of the quantities.
- The most common mistake in **(b)(ii)** was stating 'gravitational potential' as one of the forms of energy involved in the conversion. This energy was not relevant to the question because the whale was swimming at a constant depth. 'Movement energy' was stated by several candidates instead of kinetic energy. This was not a term specific enough; term required was *kinetic energy*.
- The most common error in **(c)** occurred because the candidates used the incorrect form of the equation. Therefore, 54000 m / s resulted from speed = distance × time.

Question 4

Example Candidate Response – high

Examiner Comments

4 (a) Fig. 4.1 is a diagram of the male reproductive system.

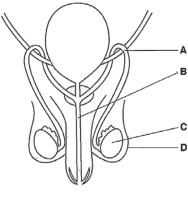


Fig. 4.1

Complete Table 4.1 to show the names and the functions of parts A, B, C and D shown in Fig. 4.1.


Table 4.1

letter of structure	name of part	function
A	sperm duct	spam transfers through here
B [.]	urethera	carries urine and semen out of the body
c	testicle	production of male gametes (sperm)
D	scrotum	protects the testicles

The candidate is awarded full credit for this response.
Although the spelling of urethra is not accurate the candidate's response is close enough to the correct spelling, and cannot be confused with any other term in the specification. The term testicle is allowed as an alternative to testis, the term which is used in the syllabus. The candidate is rewarded for correct science.

Example Candidate Response – high, continued

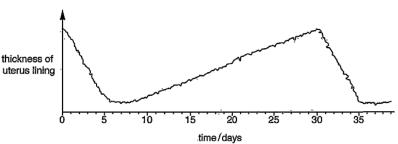


Fig. 4.2

(i) State what happens to the uterus lining during the first five days.

(ii) Use Fig. 4.2 to determine the number of days in a complete menstrual cycle.

(iii) Suggest why the uterus lining becomes thicker between days 7 and 30.

because it is repairing itself and creating atmosphere for fertilisation to take 111

OCC (c) Describe the process of fertilisation of a sperm cell and an egg cell.

the sperm cell penetrates and goes into the egg. cell in which both pairs will join together [2] [Total: 9] The candidates uses Fig. 4.2 to answer the question correctly.

Mark for (b)(i) = 1 out of 1

3 The candidate uses the information in Fig. 4.2 to determine the length of time until the cycle repeats, in this case 30 days.

Mark for (b)(ii) = 1 out of 1

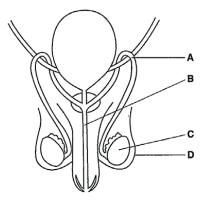
4 The candidate shows that they know the uterus lining is preparing for something. However, fertilisation takes place in the fallopian tube and the lining of the uterus is being prepared for the implantation of the growing embryo. Therefore, no credit is awarded.

Mark for (b)(iii) = 0 out of 1

5 The candidate is awarded credit for the joining of the egg cell with the sperm cell. In the second part of the sentence, it is not clear whether the candidate is referring to the nuclei of the cells. This ambiguity means they cannot be awarded credit for rest of this question.

Mark for (c) = 1 out of 2

Total mark awarded = 7 out of 9


How the candidate could have improved their answer

- Although the candidate was not penalised on this occasion, they could have improved their response to (a) by making sure they used the correct spelling for scientific terms. Incorrect spelling could sometimes cast doubt on the candidate's intended answer, especially if there were terms with similar spelling. Examples of words that could have been confused were glycerol and glycogen, ion and iron, and reflection and refraction. This candidate could also have improved their question by using the names for biological structures, as was shown in the syllabus. Therefore, they should have used testis instead of testicle.
- (b)(iii) The candidate's response could have been improved by stating that the thickening of the uterus lining was to prepare for implantation of the embryo after fertilisation.
- The candidate could have improved their answer to (c) by stating that the nuclei of the egg and sperm cells fuse after the sperm cell had entered the egg.

Example Candidate Response – middle

Examiner Comments

4 (a) Fig. 4.1 is a diagram of the male reproductive system.

Fia. 4.1

Complete Table 4.1 to show the names and the functions of parts ${\bf A},\,{\bf B},\,{\bf C}$ and ${\bf D}$ shown in Fig. 4.1.

Table 4.1

letter of structure	name of part	function
A	sperm duct	transports sperms
В	2ln9q	carries urine and semen out of the body
С	testes	production of male gametes (sperm)
D	scrotum	covers lishield/protects the testes

The candidate is awarded credit for three out of the four structures. They are not awarded credit for their incorrect naming of structure **B**. The correct name, the urethra, runs through the penis and this is the name that should have been written.

Mark for (a) = 3 out of 4

[4]

Example Candidate Response – middle, continued

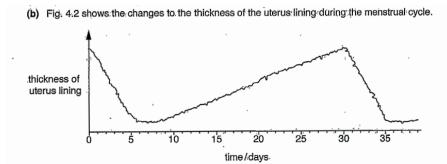


Fig. 4.2

- (i) State what happens to the uterus lining during the first five days.
 - Use Fig. 4.2 to determine the number of days in a complete menstrual cycle.
- number of days = ## 30
- Suggest: why the literus lining becomes thicker between days 7 and 30.

 because the egg has left the correspond and has not been settlised so perfrogen is no longer provided to the utility.
- (c) Describe the process of fertilisation of a sperm cell and an egg cell.
- haploid which is then divided and forms an embryon

Examiner Comments

2 The candidate is awarded credit in this question. They correctly interpret the rapid thinning of the uterus lining as the uterus breaking down (as in menstruation).

Mark for (b)(i) = 1 out of 1

3 The candidate uses the information in Fig. 4.2 to determine the length of time until the cycle repeats, in this case 30 days.

Mark for (b)(ii) = 1 out of 1

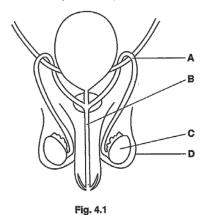
4 The lining of the uterus becomes thicker to prepare for the implantation of an embryo if fertilisation occurs. The candidate has not stated this so no credit is awarded.

Mark for (b)(iii) = 0 out of 1

The candidate is not awarded credit in this question. There is no detail of the sperm and cells fusing. The term *haploid* describes the nuclei of the egg and sperm. The zygote becomes diploid after fertilisation.

Mark for (c) = 0 out of 2

Total mark awarded = 5 out of 9


How the candidate could have improved their answer

- The candidate could have improved their answer in (a) by stating that structure **B** was the urethra instead of the penis. The urethra is the tube that carried sperms and urine through the penis to the outside, and that was the structure shown in Fig.1.1.
- **(b)(iii)** The candidate could have improved their answer by stating that the uterus lining became thicker between days 7 and 30 to prepare for the implantation of an embryo. Candidates entered for this examination were not expected to have knowledge about sex hormones so there was no credit for references to oestrogen.
- The candidate could have improved their answer to **(c)** by describing fertilisation as the fusion of the egg and sperm cells, including their nuclei. If they had stated that a diploid cell was formed, they would have been awarded credit because this would have implied that the two (haploid) nuclei fuse.

Example Candidate Response – low

Examiner Comments

4 (a) Fig. 4.1 is a diagram of the male reproductive system.

Complete Table 4.1 to show the names and the functions of parts ${\bf A},\,{\bf B},\,{\bf C}$ and ${\bf D}$ shown in Fig. 4.1.

Table 4.1

letter of structure	name of part	function
A	sperm duct	where the sperm is control around.
В	Penis	carries urine and semen out of the body
С	Testies	production of male gametes (sperm)
D	scrotum	Its the socie, keep) he lestics in place

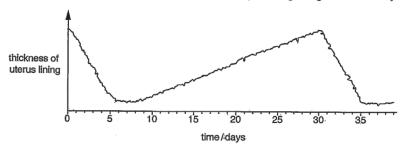
1 The candidate is awarded credit for three out of the four definitions. They are not awarded credit for their incorrect naming of structure **B**. The correct name, the urethra, runs through the penis and this is the name that should have been written.

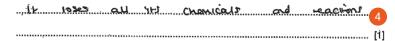
Mark for (a) = 3 out of 4

Example Candidate Response – low, continued

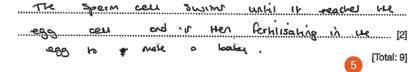
Examiner Comments

(b) Fig. 4.2 shows the changes to the thickness of the uterus lining during the menstrual cycle.




Fig. 4.2

(i) State what happens to the uterus lining during the first five days.



(ii) Use Fig. 4.2 to determine the number of days in a complete menstrual cycle.

(iii) Suggest why the uterus lining becomes thicker between days 7 and 30.

(c) Describe the process of fertilisation of a sperm cell and an egg cell.

2 The candidate was not awarded credit for this answer because they omitted to say that the thickness of the uterus lining decreases.

Mark for (b)(i) = 0 out of 1

3 The candidate is not awarded credit because they have not looked for the repetition of events, starting off on day 0, and repeating on day 30.

Mark for (b)(ii) = 0 out of 1

4 The candidate does not demonstrate any knowledge of the uterus lining becoming thicker to prepare for implantation of an embryo.

Mark for (b)(iii) = 0 out of 1

The candidate does not describe the fusion of the sperm and egg cells and their nuclei so no credit is awarded.

Mark for (c) = 0 out of 2

Total mark awarded = 3 out of 9

- The candidate could have improved their answer in (a) by stating that structure B was the urethra instead of the
 penis. The urethra is the tube that carried sperms and urine through the penis to the outside, and that was the
 structure shown in Fig.1.1.
- The candidate could have improved their answer to **(b)(i)** by referring to the thickness of the uterus lining, the label applied to the *y*-axis.
- The candidate had taken the number of days from the *x*-axis as their answer to **(b)(ii)**. They could have improved their answer having studied the graph in Fig. 4.2 to find when the uterus lining thinned rapidly again. This happened on day 30 and therefore the length of the complete menstrual cycle was 30 days.
- The candidate could have improved their answer to **(b)(iii)** by suggesting that the uterus lining was preparing for the implantation of an embryo.
- The candidate could have improved their answer by describing the process of fertilisation in terms of the fusion of the egg and sperm cell and their nuclei. The journey of the sperm cell towards the egg cell was not relevant and the candidate could have left this out.

Common mistakes candidates made in this question

- (a) A common mistake was to state that the sperm duct A carried semen. The sperms had substances added to them by other glands after they had left the sperm duct on their way out of the penis. These substances and the sperm together made up the semen. Some candidates stated that the sperm duct carried sperm towards the testes. This was not awarded credit because the direction of travel was away from the testes.
- · Most candidates incorrectly identified **B** as the penis instead of the urethra.
- **(b)(i)** The most common error was the statement that the uterus lining decreased instead of using the information in the graph to conclude that the uterus lining goes thinner.
- There were many common mistakes given in response to **(b)(ii)**. Some candidates did not use the graph to determine when the cycle repeated, and stated 28 days. Other candidates used the timescale of the graph to arrive at the time of 38 days.
- **(b)(iii)** The most common mistake seen was the statement that the uterus lining must be building up in preparation for the next menstrual cycle instead of preparing for implantation.
- For (c), the candidates had to describe the fusion of the egg cell with the sperm cell and their nuclei. Many candidates described the journey of the sperm cell towards the egg cell and stopped their explanations once the sperm had reached the egg cell. The meeting of these cells alone was not enough for credit to be awarded. Many sperm cells reach the egg cell, but only one fertilises the egg by entering it.

Question 5

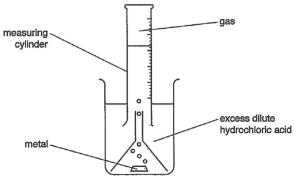
Example Candidate Response – high

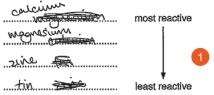
Examiner Comments

5 A student investigates the reactivities of four metals, calcium, magnesium, tin and zinc.

She reacts 1g pieces of each metal separately with excess dilute hydrochloric acid.

She collects and measures the gas from each reaction using a measuring cylinder, as shown in Fig. 5.1.

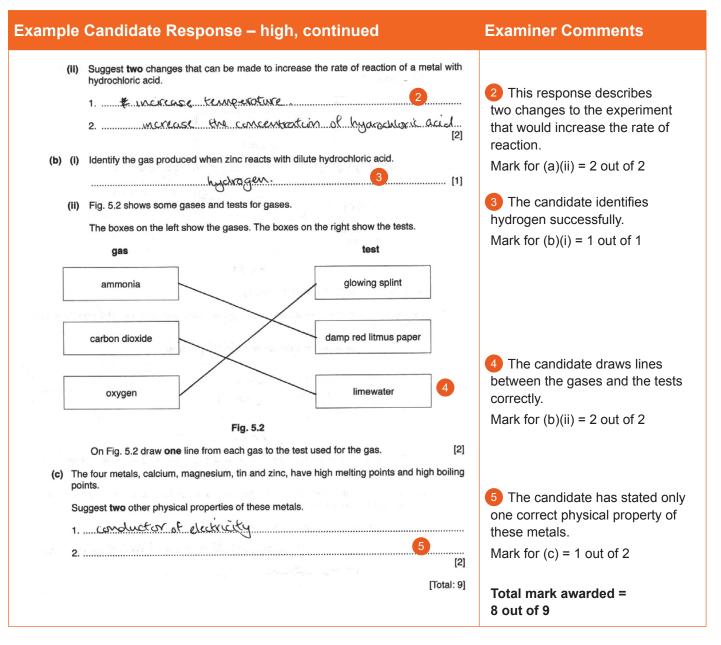



Fig. 5.1

The time taken to collect $20\,\mathrm{cm^3}$ of gas in each experiment is recorded in Table 5.1.

Table 5.1

metal	time taken/s
calcium	20
magnesium	55
tin	more than 300
zinc	100

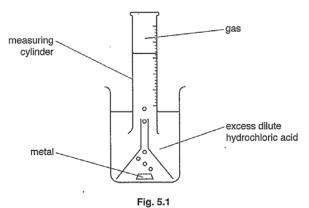

(a) (i) Deduce the order of reactivity of the four metals, calcium, magnesium, tin and zinc, from most reactive to least reactive.

1 The candidate places the four metals in descending order of reactivity.

Mark for (a)(i) = 2 out of 2

[2]

(c) The candidate could have improved their response by stating one other physical property of metals. Examples of acceptable properties were malleability and good conductors of heat.

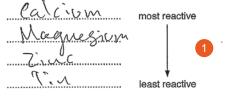

Example Candidate Response – middle

Examiner Comments

5 A student investigates the reactivities of four metals, calcium, magnesium, tin and zinc.

She reacts 1g pieces of each metal separately with excess dilute hydrochloric acid.

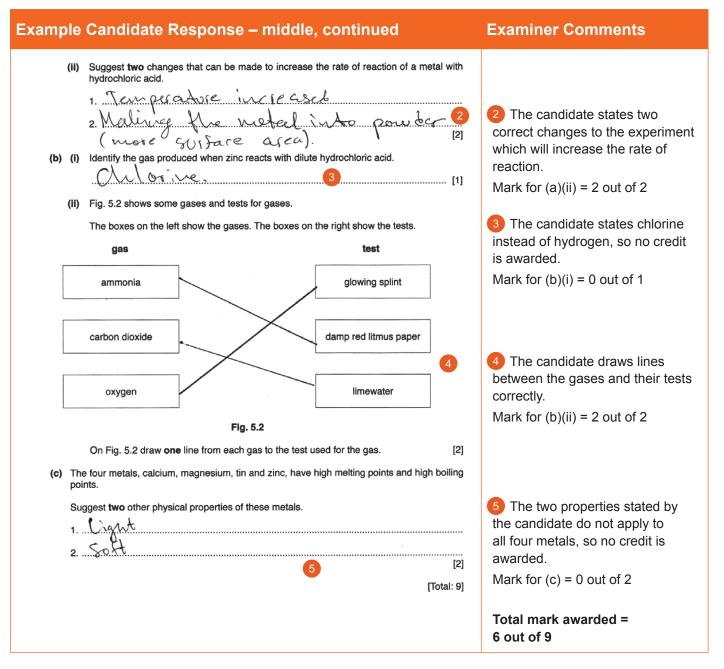
She collects and measures the gas from each reaction using a measuring cylinder, as shown in Fig. 5.1.



The time taken to collect 20 cm³ of gas in each experiment is recorded in Table 5.1.

Table 5.1

metal	time taken/s
calcium	20
magnesium	55
tin	more than 300
zinc	100


(a) (i) Deduce the order of reactivity of the four metals, calcium, magnesium, tin and zinc, from most reactive to least reactive.

1 The candidate successfully places the metals in the correct order of reactivity.

Mark for (a)(i) = 2 out of 2

[2]

- **(b)(i)** The candidate could have improved their answer by stating that hydrogen was the gas produced in the reaction.
- **(c)** The candidate could have improved their answer by stating two physical properties that applied to all metals, for example, good conductors of heat and electricity. The list included tin and zinc, both transition metals, which had high densities and were not soft.

Example Candidate Response – low

Examiner Comments

5 A student investigates the reactivities of four metals, calcium, magnesium, tin and zinc.

She reacts 1g pieces of each metal separately with excess dilute hydrochloric acid.

She collects and measures the gas from each reaction using a measuring cylinder, as shown in Fig. 5.1.

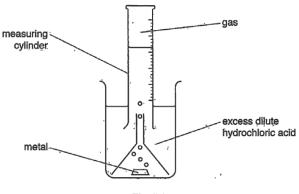



Fig. 5.1

The time taken to collect 20 cm³ of gas in each experiment is recorded in Table 5.1.

Table 5.1

metal	time taken/s
calcium -	. 20
magnesium	55
tin	more than 300
zinc	100

(a) (i) Deduce the order of reactivity of the four metals, calcium, magnesium, tin and zinc, from most reactive to least reactive.

1 The candidate places the metals in the correct order of descending reactivity.

Mark for (a)(i) = 2 out of 2

[2]

Example Candidate Response – low, continued

Examiner Comments

- (ii) Suggest two changes that can be made to increase the rate of reaction of a metal with hydrochloric acid.
 - 1. increase the amount of metal 2 add a larger volume of hydrochloric acid 2
- (b) (i) Identify the gas produced when zinc reacts with dilute hydrochloric acid.

(ii) Fig. 5.2 shows some gases and tests for gases.

The boxes on the left show the gases. The boxes on the right show the tests.

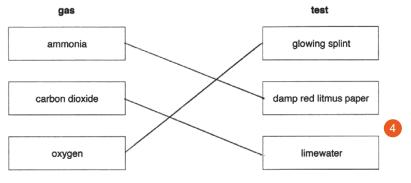


Fig. 5.2

On Fig. 5.2 draw one line from each gas to the test used for the gas.

(c) The four metals, calcium, magnesium, tin and zinc, have high melting points and high boiling points.

Suggest two other physical properties of these metals.

- 1 are acidic
- 2 all react with hydrochloric acid

The candidate is not awarded credit here. The suggested changes should be to the same quantities of the original reactants. The hydrochloric acid is in excess so adding a larger volume will not increase the rate of reaction.

Mark for (a)(ii) = 0 out of 2

3 The candidate states the name of the salt produced in the reaction, not a gas, so no credit is awarded.

Mark for (b)(i) = 0 out of 1

4 The candidate successfully matches each gas with its test.

Mark for (b)(ii) = 2 out of 2

5 No credit is awarded in this question because the candidate describes chemical properties.

Mark for (c) = 0 out of 2

Total mark awarded = 4 out of 9

- ,

[Total: 9]

[2]

- (a) The candidate should have adjusted the variables in the given experiment to increase the rate of reaction. Therefore, they could have used smaller pieces of metal with the same total mass to increase the surface area for reaction. The hydrochloric acid was present in excess, so adding more would not have altered the rate of reaction. The candidate could have increased the concentration of the hydrochloric acid to increase the rate of reaction.
- The candidate could have improved their answer to (b)(i) by stating the gas hydrogen. Zinc chloride, the other
 product of the reaction, was not a gas.
- The candidate stated two (incorrect) chemical properties of metals for **(c)** instead of physical properties as required. Suitable physical properties of metals were good conductors of heat, good conductors of electricity and malleability.

Common mistakes candidates made in this question

- (a)(i) Some candidates gave the reactivities of the metals in the reverse order. They wrongly interpreted the longer times taken as an indication that the metals were more reactive.
- For (a)(ii), candidates had to change the variables in the given experiment to increase the rate of reaction. Some candidates identified the variables that could be adjusted but did not say how they could be changed. For example, 'the temperature' and 'the concentration of the acid' were stated by many candidates. These responses were not accepted. Another common mistake in this question was made by candidates who suggested changing the quantity of the acid. The acid is present in excess, so doing this would not increase the rate of reaction. Although responses referring to dividing the metal into smaller pieces were acceptable, using a smaller piece of metal was not accepted because this suggested reducing the amount of metal used.
- **(b)(i)** Common mistakes included stating that chlorine, oxygen or carbon dioxide were produced in the reaction, instead of hydrogen.
- The majority of candidates matched the boxes correctly in **(b)(ii)**. The most common mistake was confusion between the tests for oxygen and carbon dioxide.
- (c) Many candidates described chemical properties of metals instead of physical properties.

Question 6

Example Candidate Response – <u>high</u>

Examiner Comments

6 Fig. 6.1 shows an electrical device used in kitchens to kill insects. Insects can spread disease by contaminating food.

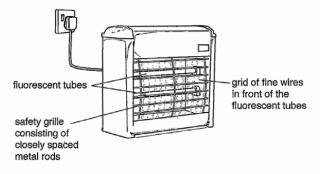


Fig. 6.1

The device is connected to the electricity supply.

- (a) The two fluorescent tubes emit both visible light and ultraviolet radiation. This attracts insects to the device.
 - (i) Fig. 6.2 shows an incomplete electromagnetic spectrum.

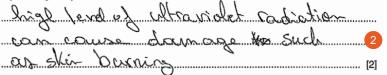


Fig. 6.2

On Fig. 6.2 place visible light and ultraviolet radiation in their correct boxes in the spectrum. [2]

(ii) The level of ultraviolet radiation emitted by the device is kept as low as possible when the device is used where people are present.

Explain why this precaution is needed.

1 The candidate places visible light and ultraviolet radiation in the correct boxes in the electromagnetic spectrum.

Mark for (a)(i) = 2 out of 2

2 Full credit is awarded here. The candidate explains that ultraviolet radiation causes damage (to the body), and provides acceptable further detail.

Mark for (a)(ii) = 2 out of 2

Example Candidate Response – high, continued	Examiner Comments
 (b) Fig. 6.1 shows a grid of fine wires in front of the two fluorescent tubes. The insects have to fly between the wires as they go towards the light. A potential difference of 2000 V exists between each pair of wires. When an insect touches a pair of wires, an electrical circuit is completed. An electric current flows through the insect. (i) State what is meant by electric current. 	3 This is incorrect so no credit is
(ii) The current in the wires when an insect touches them and completes the circuit is 0.5 A. Calculate the resistance of the insect.	awarded. Mark for (b)(i) = 0 out of 1
Show your working and state the unit of your answer. 2000 resistance = 1000 unit 13 (c) Suggest one safety hazard when operating any electrical device in a kitchen. 10 perating an the electrical device [1] Total: 9]	4 Full credit is awarded. The candidate writes the correct equation, substitutes the data and calculates the correct answer. They state the correct unit. Mark for (b)(ii) = 3 out of 3 5 Credit is awarded for stating one possible hazard in the kitchen. Mark for (c) = 1 out of 1
	Total mark awarded = 8 out of 9

The candidate could have improved their response to (b)(i) by stating that an electric current was a flow of charge.

Example Candidate Response – middle

Examiner Comments

Fig. 6.1 shows an electrical device used in kitchens to kill insects. Insects can spread disease by contaminating food.

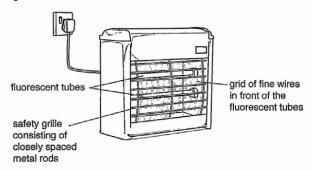


Fig. 6.1

The device is connected to the electricity supply.

- (a) The two fluorescent tubes emit both visible light and ultraviolet radiation. This attracts insects to the device.
 - (i) Fig. 6.2 shows an incomplete electromagnetic spectrum.

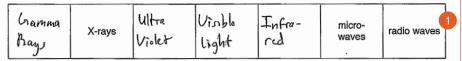
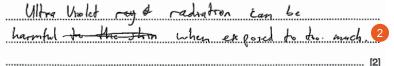



Fig. 6.2

On Fig. 6.2 place visible light and ultraviolet radiation in their correct boxes in the spectrum. [2]

(ii) The level of ultraviolet radiation emitted by the device is kept as low as possible when the device is used where people are present.

Explain why this precaution is needed.

1 The candidate is awarded full credit for placing visible light and ultraviolet (radiation) in the correct boxes of the electromagnetic spectrum.

Mark for (a)(i) = 2 out of 2

2 Partial credit is awarded here. The candidate states that ultraviolet radiation can be harmful but does not provide further detail.

Mark for (a)(ii) = 1 out of 2

Exam	ole Candidate Response – middle, continued	Examiner Comments
(b)	Fig. 6.1 shows a grid of fine wires in front of the two fluorescent tubes. The insects have to fly between the wires as they go towards the light.	
	A potential difference of 2000 V exists between each pair of wires.	
	When an insect touches a pair of wires, an electrical circuit is completed. An electric current flows through the insect.	
	(i) State what is meant by electric current. 194 engount of electrons which to thous 3 [1] 195 through a centum fort (ii) The current in the wires when an insect touches them and completes the circuit is 0.5 A.	3 Credit is awarded for stating the flow of electrons. Mark for (b)(i) = 1 out of 1
	Calculate the resistance of the insect.	
	Show your working and state the unit of your answer.	
	AND RET	4 The candidate uses a wrong equation in the calculation so no credit is awarded. Credit is given for the correct unit.
	resistance =	Mark for (b)(ii) = 1 out of 2
(c)	Suggest one safety hazard when operating any electrical device in a kitchen. Lan cause an electrical shock when it Domes The Contact with water or something [1] highly conductive Libre metal [5]	5 Full credit is awarded for showing an awareness of the danger of operating an electrical device near water. Mark for (c) = 1 out of 1
		Total mark awarded = 6 out of 9

- The candidate could have improved their answer to (a)(i) by including only the two types of radiation stated in the question. The extra information was ignored in this question, but if a candidate gave incorrect extra information in a different question it could have contradicted a previously correct part of the response.
- (a)(ii) The candidate could have improved their answer by giving a specific example of the harm caused by ultraviolet radiation.
- The candidate could have improved their answer to **(b)(i)** by stating a more general definition, that an electric current is the flow of charge. This included the flow of electrons in a wire and the flow of electricity during electrolysis. In the context of the question, the electric current flowed in a metal, so the flow of electrons was acceptable.
- **(b)(ii)** The candidate could have improved their question by using the correct equation, R = V/I. This would have given the correct answer, 4000 Ω .

Example Candidate Response – low

Examiner Comments

6 Fig. 6.1 shows an electrical device used in kitchens to kill insects. Insects can spread disease by contaminating food.

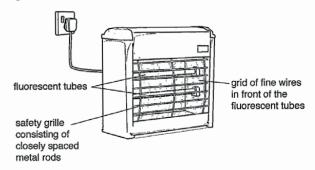


Fig. 6.1

The device is connected to the electricity supply.

- (a) The two fluorescent tubes emit both visible light and ultraviolet radiation. This attracts insects to the device.
 - (i) Fig. 6.2 shows an incomplete electromagnetic spectrum.

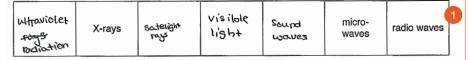
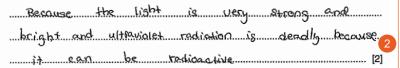



Fig. 6.2

On Fig. 6.2 place visible light and ultraviolet radiation in their correct boxes in the spectrum. [2]

(ii) The level of ultraviolet radiation emitted by the device is kept as low as possible when the device is used where people are present.

Explain why this precaution is needed.

The candidate places visible light in the correct box. Ultraviolet radiation is incorrectly placed, so only partial credit is awarded.

Mark for (a)(i) = 1 out of 2

2 No credit is awarded. The candidate does not demonstrate knowledge of the ultraviolet radiation.

Mark for (a)(ii) = 0 out of 2

Example Candidate Response – low, continued **Examiner Comments** (b) Fig. 6.1 shows a grid of fine wires in front of the two fluorescent tubes. The insects have to fly between the wires as they go towards the light. A potential difference of 2000 V exists between each pair of wires. When an insect touches a pair of wires, an electrical circuit is completed. An electric current flows through the insect. State what is meant by electric current. 3 The candidate does not show electric Shock understanding of the nature of an electric current. (ii) The current in the wires when an insect touches them and completes the circuit is 0.5 A. Mark for (b)(i) = 0 out of 1 Calculate the resistance of the insect. Show your working and state the unit of your answer. 2000V 0.5 4 Full credit is awarded for the calculation. However, the unit is incorrect so only partial credit is A=Amph V=volts A= awarded for this question. Mark for (b)(ii) = 2 out of 3 (c) Suggest one safety hazard when operating any electrical device in a kitchen. 5 This answer is not acceptable that the Voltage is too high and because the voltage for Could Couse of file or explosion [1] appliances in the kitchen is the T [Total: 9] same as in the rest of the house. Mark for (c) = 0 out of 1

Total mark awarded =

3 out of 9

- The candidate could have improved their answer in (a)(i) by having a more secure knowledge of the
 electromagnetic spectrum and placing ultraviolet radiation in the correct box. They should not have included
 additional irrelevant detail because in a different question, incorrect additional material could have contradicted a
 previously correct response.
- (a)(ii) The candidate could have improved their answer with better knowledge of ultraviolet radiation. They should have known that ultraviolet radiation was not radioactive, and the damage was more likely to harm vulnerable parts of the body than to kill them.
- The candidate could have improved their response to (b)(i) by stating that an electric current was a flow of charge.
- · Knowledge of the correct unit of resistance would have improved the response to (b)(ii).
- (c) The candidate could have improved their answer by considering how the environment in the kitchen was different from other parts of the house. The voltage of the electrical devices in the kitchen was the same as the rest of the house. They could have described the presence of water as a hazard.

Common mistakes candidates made in this question

- The most common mistake in (a)(i) was filling the required boxes the wrong way round.
- (a)(ii) The candidates knew that ultraviolet radiation could be harmful, but many answers did not give further information. The mark allocation of two for this question should have indicated that more explanation was needed.
- Most candidates stated that an electric current was a flow of electricity in (b)(i). The syllabus stated that an electric
 current was a flow of charge, and this was what was required.
- **(b)(ii)** The most common mistakes occurred when candidates used the incorrect form of the equation, R=VI or R=I/V. Another common mistake was use of the wrong unit for resistance. Incorrect units seen included volts, amps and watts.
- The most common mistake in (c) was when candidates stated that you could get an electric shock, without
 describing the circumstances for this to happen. Many candidates wrote about general safety precautions, not
 hazards. Therefore, responses such as 'wear gloves', 'tie hair back', don't put too many plugs in one socket',
 without explanation, were not awarded credit. Responses had to be relevant to the special environment of the
 kitchen.

Question 7

Example Candidate Response – high

Examiner Comments

Cell membranes are partially permeable. They allow small molecules to pass through by diffusion, but not large molecules.

glycogen

Underline one molecule from the list of molecules which can diffuse across a cell membrane.

cellulose

fat

protein /

[1]

[2]

(b) Fig. 7.1 shows a bag which acts like a cell membrane. It is partially permeable.

The bag contains a mixture of glucose and starch solutions. The bag is placed in a beaker of water.

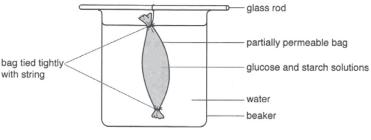


Fig. 7.1

After 30 minutes the water in the beaker is tested for starch and glucose.

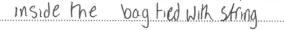

The results of these tests are shown in Table 7.1.

Table 7.1

test solution	molecule tested for	result	final colour of test solution
iodine solution	starch	negative	brick red
Benedict's solution	glucose	positive	orange

(i) Complete Table 7.1 with the final colour of the test solutions.

State where the starch molecules are at the end of the experiment.

The candidate circles the correct answer. In this case, full credit is awarded even although the question requests the candidate to underline the correct answer; the candidate has demonstrated their knowledge that oxygen is the smallest molecule.

Mark for (a) = 1 out of 1

- The candidate is awarded partial credit. They give a correct colour of the final test solution for glucose, but an incorrect colour for the negative result for starch. Mark for (b)(i) = 1 out of 2
- 3 The candidate states the correct location of the starch molecules at the end of the experiment.

Mark for (b)(ii) = 1 out of 1

Example Candidate Response – high, continued	Examiner Comments
(iii) Describe what has happened to the glucose molecules during the experiment. The glucose Molecules fullered knough the bag and went who ke solution whee [2] (iv) Use the information in Table 7.1 to compare the sizes of the glucose molecule and the starch molecule. Explain your answer. sizes of molecules of glucose was able to go have because explanation. The glucose was able to go have because to fit allowing the plasma is the component of blood which carries soluble nutrients around the body. Name one other substance that is transported by the plasma. (iii) Describe what has happened to the glucose molecules during the experiment. The glucose Mose and Secretary should be glucose molecule and the starch molecule. Explain your answer. sizes of molecules of glucose was able to go have and because and the starch molecules. (iv) Use the information in Table 7.1 to compare the sizes of the glucose molecule and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to go have and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to go have and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to go have and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to glucose molecule and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to glucose molecule and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to glucose molecule and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to glucose molecule and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to glucose molecule and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to glucose molecule and the starch molecule. Explain your answer. Sizes of molecules of glucose was able to glucose was	4 The candidate correctly describes that the glucose molecules have gone out of the bag and into the beaker. They have not mentioned that this is by diffusion, or through the membrane, so only partial credit is awarded. Mark for (b)(iii) = 1 out of 2 5 The candidate states a correct comparison of the relative sizes of the glucose and starch molecules. They provide acceptable supporting evidence, so they gain full credit. Mark for (b)(iv) = 2 out of 2 6 The candidate gives an example of a hormone carried in the plasma. This is an acceptable answer.
	Mark for (c) = 1 out of 1
	Total mark awarded = 7 out of 9

- (a) The candidate could have improved their answer by underlining the correct answer, instead of circling it.

 Candidates should always read and follow the instructions in the question paper carefully. In this case, credit was still awarded.
- The candidate could have improved their answer to **(b)(i)** by stating the correct colour, brown, for the negative test for starch with iodine.
- **(b)(iii)** The candidate's explanation was sufficient to be awarded partial credit because they described what happened to the glucose molecules. If the candidate had written 'diffused' instead of filtered they would have provided some further detail to obtain full credit.
- Although the candidate was awarded full credit in (b)(iv), the explanation could have been clearer. They could have stated that the glucose molecules were able to go through the bag, and the starch molecules were too big to have gone through the bag.

Example Candidate Response – middle Examiner Comments Cell membranes are partially permeable. They allow small molecules to pass through by diffusion, but not large molecules. Underline one molecule from the list of molecules which can diffuse across a cell membrane. cellulose fat oxygen protein glycogen 1 No credit is awarded here [1] because glycogen molecules (b) Fig. 7.1 shows a bag which acts like a cell membrane. It is partially permeable. are too big to pass through the The bag contains a mixture of glucose and starch solutions. The bag is placed in a beaker of membrane. water. Mark for (a) = 0 out of 1 glass rod partially permeable bag bag tied tightly glucose and starch solutions with string water beaker Fig. 7.1 After 30 minutes the water in the beaker is tested for starch and glucose. The results of these tests are shown in Table 7.1. Table 7.1 final colour of test solution molecule tested for result test solution 2 No credit is awarded because two incorrect colours are given iodine solution starch negative white for the final colours of the test Benedict's solution positive purple glucose solutions. Mark for (b)(i) = 0 out of 2 [2] (i) Complete Table 7.1 with the final colour of the test solutions. (ii) State where the starch molecules are at the end of the experiment. 3 The candidate has stated (3)

In the partially permeable bag.

correctly that the starch molecules

are inside the bag.

Mark for (b)(ii) = 1 out of 1

Example Candidate Response – middle, continued **Examiner Comments** (iii) Describe what has happened to the glucose molecules during the experiment. They have passed through [diffused 4 Full credit is awarded, as the across) the partially permeable bag 1 candidate states that the glucose molecules have moved across the partially permeable bag by (iv) Use the information in Table 7.1 to compare the sizes of the glucose molecule and the diffusion. starch molecule. Mark for (b)(iii) = 2 out of 2 Explain your answer. sizes of molecules ... the <u>alucose molecules are smaller</u> 5 The candidate identifies the explanation . The glucose molecules passed through relative sizes of the molecules correctly, and provides an thele bag, but the starch molecules did not, acceptable explanation for hence the quicose molecules must be smaller. their conclusion so full credit is awarded. (c) The plasma is the component of blood which carries soluble nutrients around the body. Mark for (b)(iv) = 2 out of 2 Name one other substance that is transported by the plasma. water 6 No credit is awarded here because plasma is mainly water. [Total: 9] Mark for (c) = 0 out of 1 Total mark awarded = 5 out of 9

- (a) The candidate could have improved their answer by underlining oxygen. The remaining molecules on the list were too large to pass across a cell membrane.
- The candidate could have improved their answer to (b)(i) by having stated the correct colours of the final test
 solutions, the negative test for the starch with iodine, and the positive test for glucose having used Benedict's
 solution.
- (c) The candidate's answer could have been improved by stating one of the dissolved substances transported by the plasma was stated in the syllabus. The plasma transported substances from where they were added to the blood, to where they were removed from the blood. An example of this was carbon dioxide, which was added to the blood at the tissues, and it was removed from the blood at the lungs.

Example Candidate Response – low

fat

Examiner Comments

7 (a) Cell membranes are partially permeable. They allow small molecules to pass through by diffusion, but not large molecules.

Underline one molecule from the list of molecules which can diffuse across a cell membrane.

oxygen

cellulose

protein

[1]

[2]

(b) Fig. 7.1 shows a bag which acts like a cell membrane. It is partially permeable.

The bag contains a mixture of glucose and starch solutions. The bag is placed in a beaker of water.

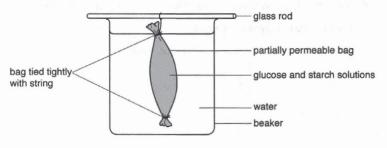
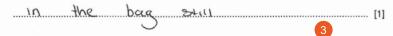


Fig. 7.1


After 30 minutes the water in the beaker is tested for starch and glucose.

The results of these tests are shown in Table 7.1.

Table 7.1

test solution	molecule tested for	result	final colour of test solution	
iodine solution	starch	negative	down red	2
Benedict's solution	glucose	positive	purple Iblue	4

- (i) Complete Table 7.1 with the final colour of the test solutions.
- (ii) State where the starch molecules are at the end of the experiment.

1) No credit is awarded for this answer. Glycogen is a polymer and the molecules are too big to pass through a cell membrane.

Mark for (a) = 0 out of 1

2 No credit is awarded because two incorrect colours are given for the final colours of the test solutions.

Mark for (b)(i) = 0 out of 2

3 The candidate is awarded full credit because they have stated the correct location of the starch molecules at the end of the experiment.

Mark for (b)(ii) = 1 out of 1

Example Candidate Response – low, continued **Examiner Comments** (iii) Describe what has happened to the glucose molecules during the experiment. Partial credit is awarded as the candidate correctly describes that the glucose molecules have escaped through the bag. Use the information in Table 7.1 to compare the sizes of the glucose molecule and the Mark for (b)(iii) = 1 out of 2 starch molecule. Explain your answer: 5 In this response, the candidate sizes of molecules Glucose, Small. Staron, larger makes a correct comparison of explanation the bag only lets small the sizes of the two molecules. molecules through So the glucose must They follow this comparison with an acceptable explanation, so full only one trace got twoogs credit is awarded. Mark for (b)(iv) = 2 out of 2 (c) The plasma is the component of blood which carries soluble nutrients around the body. Name one other substance that is transported by the plasma. 6) This answer is not acceptable 6 ... [1] ALATERALS because soluble nutrients are [Total: 9] excluded by the stem of the question. Mark for (c) = 0 out of 1

Total mark awarded =

4 out of 9

- The candidate could have improved their answer to (a) by underlining oxygen. Oxygen was the smallest of the
 molecules listed and it was the only molecule from the list which could diffuse across a cell membrane. The
 candidate should have read the instructions carefully. They were asked to underline their answer not to circle it. In
 this case, the candidate's chosen response was unambiguously shown and it could be marked. This may not be
 the case in another question.
- The candidate could have improved their answer to **(b)(i)** by stating the correct colours of the final test solutions; the negative test for the starch with iodine, and the positive test for glucose having used Benedict's solution.
- **(b)(iii)** The candidate could have improved their answer by using the word 'diffused' instead of 'escaped' to add further information to their response.
- The candidate could have improved their answer to **(c)** by stating one of the molecules in the syllabus. Therefore, carbon dioxide, ions or hormones would have been credited. Nutrients had already been excluded in the stem of the question.

Common mistakes candidates made in this question

- The words on the list in (a) were chosen by candidates in roughly equal proportions. This showed that many candidates did not have a firm understanding about the sizes of the molecules.
- The most common mistake in **(b)(i)** was a lack of knowledge of the colours of the tests for starch and glucose. Most candidates knew the range of possible acceptable colours for a positive test with Benedict's solution. Fewer were familiar with the negative test for starch with iodine.
- The most common mistake in **(b)(ii)** was the statement that the starch molecules were at the bottom of the beaker, or in the water. Candidates who wrote this disregarded the evidence in Table 7.1. This clearly showed that the starch was not in the water, so it must have been in the bag. Other candidates stated that the starch had been broken down, so it had gone into the water. There was no enzyme present that could have done this.
- **(b)(iii)** The candidates had to use Table. 7.1 again to find where the glucose molecules ended up at the end of the experiment. Most candidates concluded that the glucose molecules had moved out of the bag. A common mistake was not to add further information. There were two marks for this part of the question, so two points had to be made. Some candidates made reference to the process of osmosis in their responses. Osmosis involves the movement of **water** from a high concentration of water to a lower concentration of water across a partially permeable membrane. In the experiment, some water will move into the bag, but this was irrelevant to the question. It was the diffusion of glucose out of the bag which was important. Candidates were awarded credit if they stated that the glucose molecules moved by osmosis.
- **(b)(iv)** Most candidates produced good answers. Some candidates stated that starch molecules were smaller than glucose molecules. Others stated that there had been a reaction and both molecules were the same size. These candidates had difficulty in bringing all the evidence together.
- The main mistakes in **(c)** resulted from the interpretation of the word *substance*. The question was looking for an example of a small molecule, apart from any nutrients, that was carried in the plasma. Therefore, red blood cells, white blood cell and platelets were not correct.

Question 8

Exar	np	le Candidate Response – high	Examiner Comments
8 (8	a) A	n atom of aluminium is represented by the symbol:.	
		²⁷ 13 A <i>l</i>	1 The candidate states the correct number of protons and
	s	tate the number of protons and the number of neutrons in this atom.	neutrons.
	рі	rotons/3	Mark for (a) = 2 out of 2
	ne	eutrons	
		[2]	2 The candidate states the
(i) A	luminium is extracted from aluminium oxide.	correct answer, electrolysis.
	Α	luminium oxide is obtained from the ore bauxite.	Mark for $(b)(i) = 1$ out of 1
	(i		3 Full credit is awarded to the
		Electrolysis (2)	candidate for stating the correct
	(ii	\frac{\lambda}{\text{State the type of bonding in aluminium oxide.}}	type of bonding in aluminium
		louic	oxide.
	(iii) Suggest one reason, other than cost, why aluminium is recycled.	Mark for (b)(ii) = 1 out of 1
		It is not an unlimited resource on earth	4 The candidate is awarded full
		4	credit for stating that there the
le	- 9 0	opper forms coloured compounds, but aluminium does not,	resource (in this case aluminium
/(-			ore) is limited in quantity.
		xplain this observation.	Mark for (b)(iii) = 1 out of 1
	•••	Copper is an every-day metal (transversal?) Hot grow Aluminum is more like an alkali metal and forms [1] [5]	
	•	Munimum is more like an askali metal and form. [1] [5]	5 No credit is awarded because
(0	d) C	opper is extracted from copper oxide by heating with a non-metallic element.	the candidate has written 'transversal' instead of transitional.
	(i	Name this non-metallic element.	Aluminium is not an alkali metal.
			Mark for (c) = 0 out of 1
	,'(ii)) State whether the copper oxide is oxidised or reduced during this process.	Mark for (o) = 0 out of 1
		Explain your answer.	6 The candidate states the
		copper oxide is Feduced 7	correct non-metallic element.
		explanation it cores oxygen to carbon	Mark for $(d)(i) = 1$ out of 1
		0 0	7 Full credit is awarded, as the
		[1]	candidate states that the copper
		[Total: 8]	oxide is reduced because it loses oxygen.
			Mark for (d)(ii) = 1 out of 1
			Total mark awarded =
			7 out of 8

How the candidate could have improved their answer

The candidate could have improved their answer to **(c)** by stating that copper is a transition metal. The alternative way in which they could have answered was by stating that aluminium was not a transition metal. Both of these answers showed knowledge that transition metals, in this case copper, form coloured compounds.

Example Candidate Response – middle		Examiner Comments
8	An atom of aluminium is represented by the symbol: 27 A l State the number of protons and the number of neutrons in this atom. protons 13 neutrons 14	1 Full credit is awarded for stating the correct number of protons and neutrons in the atom of aluminium. Mark for (a) = 2 out of 2
,	Aluminium is extracted from aluminium oxide. Aluminium oxide is obtained from the ore bauxite.	2 The method of extraction is incorrect so no credit is awarded. Mark for (b)(i) = 0 out of 1
	(i) State the method of extraction used. Neating the aluminium in a blast furnace then redoxise [1] (ii) State the type of bonding in aluminium oxide. 10 nic bonding 3 [1] (iii) Suggest one reason, other than cost, why aluminium is recycled. So that the amount of wate natical can be decreased. 10 copper forms coloured compounds, but aluminium does not. Explain this observation.	 3 The candidate states the correct type of bonding in aluminium oxide. Mark for (b)(ii) = 1 out of 1 4 No credit is awarded as there is inefficient detail. Reference to preventing the waste from going to landfill is needed in this response. Mark for (b)(iii) = 0 out of 1
(Copper is extracted from copper oxide by heating with a non-metallic element.	5 The candidate is awarded full credit for stating that copper is a transition element. Mark for (c) = 1 out of 1
	(i) Name this non-metallic element. COCHON (ii) State whether the copper oxide is oxidised or reduced during this process. Explain your answer. copper oxide isCAMCL d	6 The candidate states the correct non-metallic element, carbon. Mark for (d)(i) = 1 out of 1 7 The candidate does not state that the copper oxide loses oxygen. The source of the oxygen which reacts to form carbon dioxide is not stated. Mark for (d)(ii) = 0 out of 1
		Total mark awarded = 5 out of 8

- The candidate's response to **(b)(i)** could have been improved if they had stated *electrolysis*. Aluminium was too reactive to be extracted using a blast furnace.
- **(b)(iii)** There were several acceptable answers. In the candidate's response they had to state that the waste material would not go to landfill. They could have improved their response by stating that there was a finite amount of metals available to be extracted, and recycling helped to preserve this resource.
- The candidate could have improved their response in **(d)(ii)** by stating that reduction of the copper oxide was caused by removing oxygen from the compound.

Example Candidate Response – low (a) An atom of aluminium is represented by the symbol: ²⁷Al State the number of protons and the number of neutrons in this atom. protons 13 neutrons 14 [2] (b) Aluminium is extracted from aluminium oxide. Aluminium oxide is obtained from the ore bauxite. (i) State the method of extraction used. fractional distilation 2 (ii) State the type of bonding in aluminium oxide. harrie covalent 3 (iii) Suggest one reason, other than cost, why aluminium is recycled. recycled because it is renewable so can generally be used again 4 [1] (c) Copper forms coloured compounds, but aluminium does not. Explain this observation. because capper is more reactive .,.... (d) Copper is extracted from copper oxide by heating with a non-metallic element. (i) Name this non-metallic element. Oxygen 6 (ii) State whether the copper oxide is oxidised or reduced during this process. Explain your answer.

explanation because the oxygen is taken from

copper axide to be left with only copper [1]

Examiner Comments

1 The candidate successfully states the number of protons and neutrons in an atom of aluminium.

Mark for (a) = 2 out of 2

2 No credit is awarded because the candidate states the wrong method of extraction.

Mark for (b)(i) = 0 out of 1

3 The candidate states the wrong type of bonding present in aluminium chloride, so no credit is awarded.

Mark for (b)(ii) = 0 out of 1

The candidate is not awarded credit for this answer. The term renewable is applied to energy sources which are constantly being regenerated.

Mark for (b)(iii) = 0 out of 1

5 No credit is awarded here because the candidate has not made any reference to transition metals.

Mark for (c) = 0 out of 1

6 The candidate states the wrong non-metallic element so no credit is awarded.

Mark for (d)(i) = 0 out of 1

[Total: 8]

Full credit is awarded for a correct answer.

Mark for (d)(ii) = 1 out of 1

Total mark awarded = 3 out of 8

- The candidate could have improved their answer to **(b)(i)** by stating electrolysis as the method of extraction of aluminium. Fractional distillation was used to separate the fractions of petroleum.
- **(b)(ii)** The candidate should have stated ionic, instead of covalent for the type of bonding in aluminium oxide. This was because the bonding in aluminium oxide was between a metal and a non-metal.
- The candidate could have improved their answer to **(b)(iii)** by stating that there was only a finite amount of aluminium (ore) available and recycling preserved this resource.
- The candidate could have improved their response to **(c)** by stating that copper was a transition metal, which could form coloured compounds.
- (d)(i) The candidate could have improved their answer by stating carbon. Oxygen would not cause the carbon to lose its oxygen. It had to be a different non-metal, in this case carbon.

Common mistakes candidates made in this question

- The most common mistakes in (a) resulted from incorrect interpretations of the atomic symbol. Incorrect answers included 14 or 27 protons and 13 or 27 neutrons.
- Many candidates stated the wrong method of extraction in **(b)(i)**. The most common mistakes were heating, reduction, redox and fractional distillation.
- (b)(ii) Most candidates stated the wrong type of bonding. Incorrect responses included covalent bonding and chemical bonds.
- The most common mistake in **(b)(iii)** occurred when candidates just described recycling; that the metal could be used again. These candidates often did not go further to suggest the advantages of this in terms of preserving a limited resource, or reduced the energy use when recycling was compared to extraction.
- In (c), many candidates did not know that transition metals can form coloured compounds. The most common mistakes included 'copper is a metal and aluminium is not' and 'copper rusts and aluminium does not'.
- The most common mistakes in **(d)(i)** included the names of metals instead of carbon. The candidates recognised that the extraction described was a displacement reaction, but the question asked for a non-metallic element.
- Common mistakes in **(d)(ii)** occurred when candidates identified reduction correctly but did not explain why the copper oxide was reduced. Many candidates stated that the oxide was removed, rather than the oxygen.

Question 9

Example Candidate Response – <u>high</u>

Examiner Comments

9 Fig. 9:1 shows a laboratory water-bath used to keep experiments at a constant temperature.

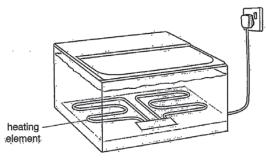


Fig. 9.1

The water is heated by an electric heating element at the bottom of the water-bath.

Fig. 9.2 shows the structure inside the tube of the heating element.

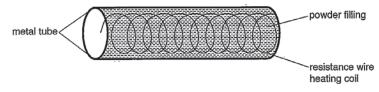
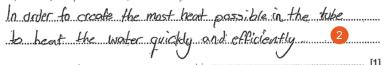



Fig. 9.2

- (a) The water-bath is filled with cold water at 10 °C. The heating element is turned on to heat the water to 40 °C.
 - (i) State the electrical property that the powder surrounding the hot resistance wire should have.

It should be an insulator [1]

(ii) Explain why the powder filling must be a good thermal conductor.

1 The candidate states that the powder should be an insulator so full credit is awarded.

Mark for (a)(i) = 1 out of 1

2 The candidate understands that the thermal energy (heat) must be able to get through the metal tube in order to heat the water.

Mark for (a)(ii) = 1 out of 1

Example Candidate Response – high, continued **Examiner Comments** Describe how the thermal energy is transferred by the water to raise the water temperature to 40 °C. MAR. The water is heated by convection and a convection current takes place as the hot water (120) lowerds the surface and the colder water comes down Full credit is awarded for a towards the heating element correct description of convection. Mark for (a)(iii) = 2 out of 2 (b) The electrical circuit in the water-bath contains a switch, a heater and a fuse. (i) On Fig. 9.3 complete the circuit diagram for the water-bath, including the symbols for a switch and a fuse. 240 V The candidate is awarded partial credit. They draw the correct symbol for the switch, but draw the wrong symbol for the fuse. Mark for (b)(i) = 1 out of 2 heater Fig. 9.3 [2] (ii) The current through the heater when switched on is 3A. A 5A fuse is used in the circuit. No credit is awarded here. Explain why a 3A fuse would not be suitable for use in this circuit. The candidate does not give an Because a 3A fuse week is not sufficient to ensure acceptable reason why the 3A the safety of the wer of the heater A higher ampage [1] fuse is not sufficient. fuse is regard . Mark for (b)(ii) = 0 out of 1 [Total: 7] Total mark awarded = 5 out of 7

- **(b)(i)** The candidate could have improved their answer by drawing the symbol for the fuse instead of a resistor. The candidate should have ensured that connecting wires were drawn using a ruler, and that there were no gaps in the circuit.
- The candidate could have improved their answer to **(b)(ii)** by explaining that the 3A fuse would blow with normal usage, which included occasions when the current was slightly above 3A. The issue of the safety of the user did not arise because the fuse would blow with a small increase in current above 3A and no current would flow.

Example Candidate Response - middle

Examiner Comments

Fig. 9.1 shows a laboratory water-bath used to keep experiments at a constant temperature.

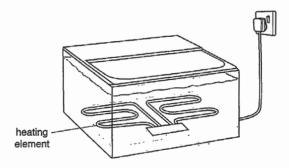
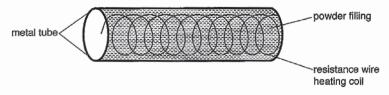
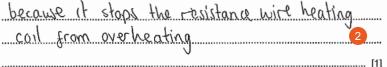


Fig. 9.1

The water is heated by an electric heating element at the bottom of the water-bath.

Fig. 9.2 shows the structure inside the tube of the heating element.




Fig. 9.2

- (a) The water-bath is filled with cold water at 10 °C. The heating element is turned on to heat the water to 40 °C.
 - (i) State the electrical property that the powder surrounding the hot resistance wire should have.

neve.

electrical conductivity to allow the current to flow [1]

(ii) Explain why the powder filling must be a good thermal conductor.

1) No credit is awarded in this question. If the powder is a good conductor of electricity, the current would be conducted into the water.

Mark for (a)(i) = 0 out of 1

2 The candidate has not given a correct explanation. The powder filling must be a good thermal conductor to transfer the thermal energy to the tube so that the water can be heated.

Mark for (a)(ii) = 0 out of 1

Example Candidate Response – middle, continued **Examiner Comments** Describe how the thermal energy is transferred by the water to raise the water temperature to 40 °C. Full credit is awarded for stating that the heat transfer is by convection and providing further information about this in terms of the hot water molecules rising. (b) The electrical circuit in the water-bath contains a switch, a heater and a fuse. Mark for (a)(iii) = 2 out of 2 (i) On Fig. 9.3 complete the circuit diagram for the water-bath, including the symbols for a switch and a fuse. 240 V 4 Full credit is awarded for a complete circuit containing the correct symbols for a switch and a fuse. Mark for (b)(i) = 2 out of 2 heater Fig. 9.3 [2] 5 The candidate has stated that (ii) The current through the heater when switched on is 3A. A 5A fuse is used in the circuit. the current may go above 3A but Explain why a 3A fuse would not be suitable for use in this circuit they have not stated that the fuse because the suce will overheat would blow or the fuse wire would melt, so no credit is awarded. damaged Mark for (b)(ii) = 0 out of 1 [Total: 7] Total mark awarded = 4 out of 7

- The candidate could have improved their answer to **(a)(i)** by stating that the powder surrounding the heating coil should be an insulator. This would ensure that electric current did not escape into the water.
- (a)(ii) The candidate could have explained that the thermal energy generated by the resistance wire must be able to get out of the tube in order to heat the water, so the powder must be a thermal conductor.
- The candidate was awarded full credit in (a)(iii). The candidate attempted an explanation of convection in terms of density; this was not recorded for the Core syllabus. However, it was worth pointing out that the hot water molecules became less densely packed. The molecules themselves do not change in density, but their arrangement can change the density of the water by being further apart or closer together.
- The candidate could have improved their answer to **(b)(ii)** by stating that the fuse would blow/melt if the current exceeded 3A. The responses 'overheat' and 'get damaged' were too vague to be acceptable.

Example Candidate Response – low

Examiner Comments

9 Fig. 9.1 shows a laboratory water-bath used to keep experiments at a constant temperature.

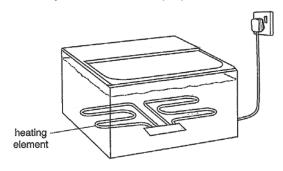


Fig. 9.1

The water is heated by an electric heating element at the bottom of the water-bath.

Fig. 9.2 shows the structure inside the tube of the heating element.

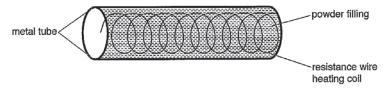
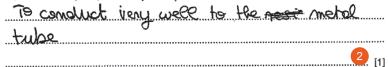



Fig. 9.2

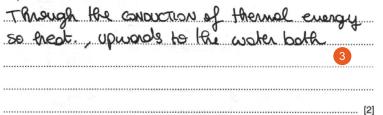
- (a) The water-bath is filled with cold water at 10 °C. The heating element is turned on to heat the water to 40 °C.
 - (i) State the electrical property that the powder surrounding the hot resistance wire should have.

Campetiam 1

(ii) Explain why the powder filling must be a good thermal conductor.

1 The candidate states an incorrect answer so no credit is awarded.

Mark for (a)(i) = 0 out of 1


2 This response is awarded credit because the candidate shows understanding that the thermal energy has to reach the metal tube.

Mark for (a)(ii) = 1 out of 1

Example Candidate Response - low, continued

Examiner Comments

(iii) Describe how the thermal energy is transferred by the water to raise the water temperature to 40 °C.

- (b) The electrical circuit in the water-bath contains a switch, a heater and a fuse.
 - (i) On Fig. 9.3 complete the circuit diagram for the water-bath, including the symbols for a switch and a fuse.

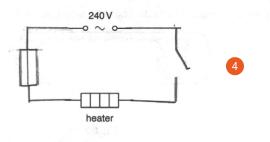
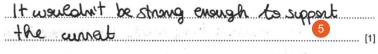



Fig. 9.3

(ii) The current through the heater when switched on is 3A. A 5A fuse is used in the circuit.

Explain why a 3A fuse would not be suitable for use in this circuit.

No credit is awarded here because the candidate has stated the wrong method of heat transfer.

Mark for (a)(iii) = 0 out of 2

4 Full credit is awarded for a complete circuit containing correct symbols for the fuse and switch.

Mark for (b)(i) = 2 out of 2

5 No credit is awarded here. Not enough explanation is given to show understanding of how the fuse works.

Mark for (b)(ii) = 0 out of 1

[2]

[Total: 7]

Total mark awarded = 3 out of 7

- (a)(i) The candidate could have improved their answer by stating that the powder should have been an (electrical) insulator.
- The candidate could have improved their answer to **(a)(iii)** by describing convection, which occurs in water. Conduction occurs in solids, and convection was the main method of heat transfer within liquids and gases.
- **(b)(ii)** The candidate could have improved their response by explaining that the fuse would blow or melt (with normal usage). 'Not strong enough' did not demonstrate knowledge of how a fuse worked and there was no explanation as to why the fuse would be inadequate.

Common mistakes candidates made in this question

- The most common mistakes in (a)(i) were that the powder was either a thermal conductor or an electrical conductor.
- (a)(ii) The most common mistake occurred when candidates stated that the heat had to be conducted away from the heating coil to prevent it from overheating. This missed the point of the heating element, that the heat produced in the coil had to be conducted through the powder and the tube to the water so that the water bath can heat up.
- (a)(iii) The most common mistake was a description of the heat transfer through water as conduction instead of convection. Some candidates stated that electricity moved through the water to heat it. These candidates did not understand the point of the element; to use the heat generated by the resistance coil to heat up the water but making sure that the electricity is isolated from the water.
- The most common mistake in **(b)(i)** occurred when candidates drew the symbol for a resistor instead of a fuse. Also, diagrams were often drawn without using a ruler, and sometimes there were gaps where the connecting wires had not been joined up to the components.
- **(b)(ii)** Most candidates did not have an understanding of how a fuse works. Many responses referred to the voltage across the fuse rather than the current through it. Candidates also wrote responses such as 'the fuse isn't strong enough' or 'the fuse can't handle the current'. These responses did not show any understanding of the fluctuation of current that might occur in normal usage, or that the fuse would blow, or the fuse wire would melt if the current becomes too high.