MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper	
	IGCSE – May/June 2013		0606	23
1	$\frac{2+2\sin^2\theta}{2}$	B1	For all methods look for:	
	$\frac{1}{\cos^2 \theta}$		– correct simplifi	ied expression
	2		– correct use of Pythagoras	
	$\frac{2}{\cos^2\theta} = 2\sec\theta$	B1	$-$ use of tan $=$ $\frac{si}{c}$	<u>n</u>
			COS	
	$\sin^2\theta$ $2\tan^2\theta$	B1	$-$ use of $\frac{1}{}$ = se	ec
	$\frac{\sin^2\theta}{\cos^2\theta} = 2\tan^2\theta$	БІ	cos	
			Award first 3 the	en last B1 for
	$2 \sec^2 \theta = 2 + 2 \tan^2 \theta$ and completion	B1	final expression	from fully
			correct method.	
			Inconsistent no a	ngle used then
			-1 (can recover).	•
			If start from RHS	S award
			similarly.	
	Or			
	$(\sec\theta + \tan\theta)^2 + (\sec\theta - \tan\theta)^2$	[B 1, B 1		
		D1		
	$2\sec^2\theta + 2\tan^2\theta$	B1		
	$2(1 + \tan^2 \theta) + 2\tan^2 \theta$ and completion	B1]		
	$2(1 + \tan \theta) + 2\tan \theta$ and completion	2-1		
	Or			
	$2 + 2\sin^2\theta$	[B1		
	$\cos^2 \theta$	[D1		
	$a(\cdot, 2, a, \ldots, 2, a) \cdot a \cdot \cdot 2 \cdot a$			
	$\frac{2\left(\sin^2\theta + \cos^2\theta\right) + 2\sin^2\theta}{\cos^2\theta}$	B1		
	$\cos^2 \theta$			
	$4\sin^2\theta$ $4\sin^2\theta$			
	$\frac{4 \sin \theta}{\cos^2 \theta} = 4 \tan^2 \theta$	B1		
	$\frac{2\cos^2\theta}{\cos^2\theta} = 2 \text{ and completion}$	B1]		
	$\frac{1}{\cos^2 \theta} = 2$ and completion	DIJ		
2 (i)	3.2	B1		
2 (i)	<i></i>	DI		
(ii)	15	B 1		
(iii)	uses area to find distance	M1	If split 2 or 3 cor	rect formulae
			and must be attempting total	
			area	
	two of 40, 240 and 32	A1		
				, ·
	312	A1	or A2 for 312 fro	om trapezium

Page 5 Mark Scheme				Syllabus	Paper	
	IGCSE – May/June 2013			0606	23	
3		4				
3		$\frac{\mathrm{d}y}{\mathrm{d}x} = k \sin x \cos x$	M1			
		d <i>x</i>				
		<i>k</i> = –8	A1			
		Attempt to find <i>x</i> when $y = 8$	M1	Must get to $x =$ numerical value		
		$\mathbf{x} = \frac{\pi}{4} \ (0.785)$	A1	$45^\circ = \mathbf{A0}$ (but ca	an still gain next	
		4		2 marks)		
		dy dy dx				
		Uses $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	M1	Must use numer dx	ical value for x	
				and 0.2 for $\frac{dx}{dt}$		
		-0.8 (not rounded)	A1	(condone poor n correct terms mu		
					• •	
4	(i)	Idea of modulus correct	B1	Two straight line touching <i>x</i> -axis	es above and	
		$\frac{1}{2}$ indicated on x-axis	B1	Must be a sketch	1	
		2				
		2 indicated on y-axis	B1	Must be a sketch	1	
	(ii)	2				
		$\frac{2}{3}$ (0.667)	B1	0.67 is B0		
		Solve $4x - 2 = -x$ or $(4x - 2)^2 = x^2$	M1	As far as $x = number a x$	marical value	
		Solve $4x - 2 = -x$ of $(4x - 2) = x$	1411	As fai as $x = 110$	incritear value	
		$\frac{2}{5}$	A1	SC: If drawn the	en B1 , B2 for	
		5		exact answers of	nly	
5	(i)	$(20, 10^{-3})^{96-3x}$	Dí	Can be implied	by next	
		$(QR = PS =)\frac{96 - 3x}{2}$	B1	statement	2	
		$(06 \ 3r)$				
		Area = $\left(\frac{96-3x}{2}\right) \times x$	B1	AG		
	(ii)	$\frac{dA}{dx} = \frac{96-6x}{2}$ or $48 - 3x$ o.e.	B1			
		dx = 2				
		dA = 96 - 6x				
		Solving $\frac{dA}{dx} = \frac{96 - 6x}{2} = 0$	M1	As far as $x =$ numerical value		
		x = 16	A 1			
		x = 16	A1			
		A = 384 and state maximum	A1			
		A = 384 and state maximum	A1			

Page 6		Mark Scheme	Syllabus	Paper	
L		IGCSE – May/June 2013	0606	23	
6		Applies quotient rule correctly	M1	or product rul	e
		$\frac{(x-2)2 x - (x^2 + 8)}{(x-2)^2}$	A1	$2x(x-2)^{-1}-$	$(x^{2}+8)(x-2)^{-2}$
		<i>y</i> = 12	B1		
		Uses $m_1m_2 = -1$	M1		
		(Gradient normal = $\frac{1}{2}$)			
		Uses equation of line for normal	M1	If uses $y = mx$ for M1	x + c must find c
		$y-12 = \frac{1}{2}(x-4)$ or $y = \frac{1}{2}x+10$	A1		
7	(i)	$64 + 192x + 240x^2 + 160x^3$ mark final answer	B3 , 2, 1 0	2 terms correc Can be earned	ct earn B1
	(ii)	Multiply out $(1 + 3x)(1 - x)$	M1		
		$1 + 2x - 3x^2$ o.e.	A1		
		$(1) \times (160) + (2) \times (240) + (-3) \times (192)$ o.e.	M1	3 terms	
		64	A1		
		Or Multiply out $(1 - x) (64 + 192x + 240x^2 + 160x^3)$	[M1	May be other for first M1 fi term	variations: ind x^2 term or x^3
		$48x^2 - 80x^3$ o.e.	A1		
		Multiply by $1 + 3x$	M1	for second M relevant terms	1 must produce all s
		64	A1]		
		Or (1 + 3x) (64 + 192x + 240x ² + 160x ³)	[M1		
		$816x^2 + 880x^3$ o.e.	A1		
		Multiply by $1 - x$	M1		
		64	A1]		

Page 7	Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2013		0606	23
8	Eliminates y (or x) and full attempt at expansion	M1		
	$4x^2 - 8x - 96 = 0 \text{or } y^2 + 12y - 64 = 0$	A1		
	Factorise 3 term relevant quadratic	M1	Or use correct for	ormula
	x = -4 and 6 or $y = -16$ and 4	A1		
	y = -16 and 4 or $x = -4$ and 6	A1√		
	Uses Pythagoras for relevant points	M1		
	22.4 or $\sqrt{500}$ or $10\sqrt{5}$	A1	cao	
9 (i)	Attempt to solve 3 term quadratic	M1		
	-3 and 8	A1		
	-3 x 8	A1	Condone -3 x	x AND x = 8
(ii)	4 <i>x</i> (12)	B 1		
	$S \cup T = -3 x 12$	B 1		
(iii)	$S \cap T = 4$ x 8 or S' = -5 x -3 , 8 x 12 and T' = -5 x 4	B1	Penalise confusi (or and)	on over and once only
	-5 x 4	B1 √	their 4	
	8 <i>x</i> 12	B1 √	their 8 (Ignore A	AND/OR etc.)

Page 8		Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2013		0606	23
10 (i)		$\frac{n\alpha}{50} = \frac{\sin 58}{240}$	M1 A1	Use of sin rule/c rule/resolving wi 58/32/122/148. Must be correct	ith 50, 240 and
	α	=10.2	A1		
	В	earing (0)21.8 or (0)22	A1√	$\sqrt{1}$ for $32 - \alpha$	
(ii)	V^{2}	$a^{2} = 240^{2} + 50^{2} - 2 \times 240 \times 50 \times \cos(122 - \alpha)$	M1	Correct use of size rule/resolving	n rule/cosine
	V	= 263 awt	A1	Can be in (i)	
	T	$=\frac{500}{V}$	M1	Only allow if <i>V</i> of non right-angled	
	11	4 or 1 hour 54 mins	A1	Do not allow inc	orrect units
	O <i>T</i>	$=\frac{500\cos 32}{240\cos 21.8}$	[M1	Alternative for p Also can find dis (457) then 457/2	stance for 240
	50	00 cos 32	B 1		
	24	0 cos 21.8	B 1		
	11	4 or 1 hour 54 mins	A1]		
11 (i)	1		B1	Not a range for k x = 1 and $x = 1$	r, but condone
(ii)	f	-5	B 1	Not <i>x</i> , but condo	ne y
(iii)	М	ethod of inverse	M1	Do not reward po allow slips	oor algebra but
	1-	$+\sqrt{x+5}$	A1	Must be $f^{-1} = \dots c$	or $y =$
(iv)		Positive quadratic curve correct range and omain	B1	Must cross <i>x</i> -axi	S
	\mathbf{f}^{-1}	: Reflection of f in $y = x$	B1 √	Condone slight inaccuracies unless clear contradiction.	
(v)		rrange $f(x) = x$ or $f^{-1}(x) = x$ to 3 term adratic = 0	M1		
	4	only www	A1		

Page 9			Mark Scheme		Syllabus	Paper
			IGCSE – May/June 2013		0606	23
12	(i)	f(3	(27+9+3a+b) = 0 or $3a+b = -36$	M1	Equate $f(3)$ to 0	
		f(-	(-1) = (-1 + 1 - a + b) = 20 or $-a + b = 20$	M1	Equate $f(-1)$ to 2	20
		So	lve equations	M1		
		a =	$= -14, \ b = 6$	A1	If uses $b = 6$ then Need both value	
	(ii)	Fir	nd quadratic factor	M1	If division, must be complete with first 2 terms correct If writes down, must be $(x^2 + kx - 2)$	
		x^2	-4x-2	A1		
			e quadratic formula or completing square on evant 3 term quadratic	M1	If completing sq $\left(x + \frac{k}{2}\right)^2 = 2 \pm \left(x + \frac{k}{2}\right)^2$	
			$\frac{4 \pm \sqrt{16 + 8}}{2}$ or better	A1 √		
		-2	$2 \pm \sqrt{6}$ isw	A1	сао	