CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW −1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

1		$m = \frac{18 - 3}{4 - 1}$ or 5 soi	M1	or $18 = 4m + c$ and $3 = m + c$ subtracting/substituting to solve
		Y-3 = their 5(X-1) or Y-18 = their 5(X-4)		for m or c , condone one error
		or $3 = their 5 + c$ or $18 = their 5 \times 4 + c$	M1	or using <i>their m</i> or <i>their c</i> to find <i>their c</i> or <i>their m</i> , without further
		$\sqrt{y} = (their m) x^2 + (their c)$ or		error
		$\sqrt{y} = (their \ m) (x^2 - 1) + 3 \text{ or}$ $\sqrt{y} = (their \ m) (x^2 - 4) + 18$		
			M1	their m and c must be validly obtained
		$y = (5x^2 - 2)^2$ or $y = (5(x^2 - 1) + 3)^2$ or $y = (5(x^2 - 4) + 18)^2$ cao, isw	A1	
2	(a)	$(p+1) \ln 3 = \ln 0.7$	M1	or $p + 1 = \log_3 0.7$ or
		In 0.7 Iα 0.7		$p\ln 3 = \ln\left(\frac{0.7}{3}\right)$
		$p = \frac{\ln 0.7}{\ln 3} - 1$ or $p = \frac{\lg 0.7}{\lg 3} - 1$	M1	or $p = \log_3 0.7 - 1$
				or $p \ln 3 = \ln \left(\frac{0.7}{3} \right) \div \ln 3$
		−1.32 cao	A1	allow M2 for $p = \log_3\left(\frac{0.7}{3}\right)$
				correct answer only scores B3
	(b)	$2^{\frac{5}{2}} \times x^6 \times y^{-\frac{1}{2}}$ or $a = \frac{5}{2}$, $b = 6$, $c = -\frac{1}{2}$	В3	B1 for each component
3	(a) (i)	A and E	В2	1 mark for each B1 for 1 extra, B0 if 2 or more extras
	(ii)	C and D	B2	1 mark for each
	()			B1 if 1 extra, B0 if 2 or more extras
	(b)	5 1 5 1	В2	(-1, 0), (1, 3), (3, 4) or B1 for two points correct and joined or for three points correct but clearly not joined

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

4	(i)	$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} \text{ or}$ $\overrightarrow{OB} - \overrightarrow{OA} = 3(\overrightarrow{OC} - \overrightarrow{OA}) \text{ soi}$	B1	or $3\overrightarrow{AC} = 3(c_1 - 4)\mathbf{i} + 3(c_2 + 21)\mathbf{j}$ o.e. soi
		$\pm (18\mathbf{i} - 9\mathbf{j})$ o.e. or $\overrightarrow{OC} = \frac{2}{3}\overrightarrow{OA} + \frac{1}{3}\overrightarrow{OB}$	B1	
		$4\mathbf{i} - 21\mathbf{j} + \frac{1}{3}(their(18\mathbf{i} - 9\mathbf{j}))$ o.e. or	M1	or $3(c_1 - 4) = their \ 18$ and $3(c_2 + 21) = their \ (-9)$
		$\frac{2}{3}(4\mathbf{i} - 21\mathbf{j}) + \frac{1}{3}(22\mathbf{i} - 30\mathbf{j})$ $10\mathbf{i} - 24\mathbf{j} \text{ cao}$	A1	
	(ii)	$\left \overrightarrow{OC} \right = \sqrt{their 10^2 + their (-24)^2}$ soi	M1	condone $ \overrightarrow{OC} = \sqrt{their10^2 + their(24)^2}$
		$\frac{1}{13}(5\mathbf{i} - 12\mathbf{j}) \text{ or } \frac{1}{26}(10\mathbf{i} - 24\mathbf{j}) \text{ isw}$	A1 FT	FT their $x\mathbf{i} + y\mathbf{j}$ o.e.
5		$AX = \sqrt{45}$	B1	may be implied by $3\sqrt{5}$
		$AX = 3\sqrt{5}$	B1	may be seen later
		$\frac{1}{2}\left(4+\sqrt{5}+2+x\right) \times their \sqrt{45} \text{ soi}$	M1	may be implied by e.g. summation of rectangle and two
		$15(\sqrt{5} + 2) = \frac{1}{2}(4 + \sqrt{5} + 2 + x) \times their \sqrt{45} \text{ or}$	M1	triangles
		better Correctly divide <i>their</i> equation by <i>their</i> $\sqrt{5}$ or	M1	or correctly multiply both sides
		their $\sqrt{45}$ and rationalise denominator		of <i>their</i> equation by <i>their</i> $\sqrt{5}$ or <i>their</i> $\sqrt{45}$ and obtain a rational coefficient of x soi
		completion to $4+3\sqrt{5}$ www	A1	answer only does not score

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

6	(i) (ii)	arc $AB = r\left(\frac{\pi}{3}\right)$ chord $AB = r$ with justification and summation and completion to given answer r = 12.7 $\frac{1}{2} \times their r^2 \times \left(\frac{\pi}{3} - \sin\left(\frac{\pi}{3}\right)\right)$	B1 B1 B1 M3	$r\left(\frac{3+\pi}{3}\right)$ must be seen; accept awrt 12.7 may be implied for example 84.4569.84
		awrt 14.6	A1	or M1 for $\frac{1}{2} \times their r^2 \times \frac{\pi}{3}$ or 84.45 and M1 for $\frac{1}{2} \times their r^2 \times \sin \frac{\pi}{3}$ o.e. or 69.84 and M1 for Area Sector – Area triangle attempted
7	(i)	$k(3-5x)^{11}$	M1	
		$5 \times 12(3-5x)^{11}$ or better, isw	A1	
	(ii)	$x^{2}(their\cos x) + (their\ 2x)\sin x$	M1	clearly applies correct form of product rule
		$x^2 \cos x + 2x \sin x \text{ isw}$	A1	product rule
	(iii)	Quotient rule attempt:		Product rule attempt:
		$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$	B1	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$
		$\frac{\mathrm{d}}{\mathrm{d}x}\left(1+\mathrm{e}^{2x}\right)=2\mathrm{e}^{2x}$	B1	$\frac{d}{dx}(1+e^{2x})^{-1} = -2e^{2x}(1+e^{2x})^{-2}$
		clearly applies correct form of quotient rule $\frac{(1 + e^{2x})(their \sec^2 x) - (their 2e^{2x})\tan x}{(1 + e^{2x})^2}$	M1	$\tan x (their - 2e^{2x}(1 + e^{2x})^{-2}) + (1 + e^{2x})^{-1}(their \sec^2 x)$
		$\frac{(1+e^{2x})\sec^2 x - 2e^{2x}\tan x}{(1+e^{2x})^2}$ isw	A1	$\tan x \left(-2e^{2x}(1+e^{2x})^{-2}\right) + (1+e^{2x})^{-1}(\sec^2 x)$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

8	(i)	$y-2 = \left(\frac{6-2}{2+6}\right)(x+6)$ o.e. soi	M1	or $y - 6 = \left(\frac{6 - 2}{2 + 6}\right)(x - 2)$
		$y = \frac{1}{2}x + 5 \text{ isw}$	A1	
	(ii)	Use of $m_1m_2 = -1$ y - 6 = (their - 2)(x - 2) or better, isw	M1 A1 FT	or $y = (their - 2)x + c$, c = their 10, isw
	(iii)	$(x+6)^2 + (y-2)^2 = 10^2$ o.e.	В1	or $(x-2)^2 + (y-6)^2 = (\sqrt{20})^2$ o.e. or $(\sqrt{80})^2 + ((x-2)^2 + (y-6)^2) = 10^2$
		Substitute $y = their (-2x + 10)$	M1*	or identifying one point by inspection from the length equation and testing it in the equation of <i>BC</i> or vice versa
		Solve their quadratic	M1 dep*	or identifying the second point by inspection from the length equation and testing it in the equation of <i>BC</i> or vice versa
		(0, 10) and (4, 2) o.e. only	A1	answer only does not score
9	(a)	$14 = k + c$ and $6 = \frac{k}{9} + c$ o.e.	M1	for two equations in <i>k</i> and <i>c</i> ; may be unsimplified; condone one slip in one equation
		c = 5 $k = 9$	A1 A1	out in our edunion
	(b) (i)	79.2 or 79.158574 rot to 4 or more sf	B1	
	(ii)	$e^{2x} + 5e^x - 24 = 0$ or $(e^x)^2 + 5e^x - 24 = 0$ o.e.	M1	condone one error, but must be three terms
		factorise their 3 term quadratic	M1	or correct/correct ft use of formula or completing the square
		$e^x = 3$ $x = \ln 3$ or 1.1(0) or 1.0986122 rot to 3 or more sf as only answer from fully correct working	A1 A1	ignore $e^x = -8$ do not allow final mark if value given from $e^x = -8$
		torrock working		if M0M0 then SC2 if $e^x = 3$ is seen www and leads to $x = \ln 3$ or 1.1(0) or 1.0986122 rot to 3 or more sf

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

10 (a) (i)	90 180 270 360*	B1 B1 B1 B1	shape; cosine curve – ends must be approaching a turning point be centred on $y = 1$ clear intent to have min at –2 and max at 4 2 cycles
(ii)	3	B1	
(iii)	180	B1	
(b)	$\csc x = \frac{1}{\sin x} \operatorname{soi}$	B 1	$or 1 + tan^2 x = \frac{1}{\cos^2 x}$
	$\sin x = \sqrt{1 - \cos^2 x} \text{ or } \sqrt{1 - p^2}$	B1	or $\csc^2 x = 1 + \frac{1}{1 - p^2 / p^2}$ soi
	$\frac{-1}{\sqrt{1-p^2}} \text{ o.e.}$		or $-\sqrt{1+\frac{p^2}{1-p^2}}$ or better

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	22

11	(i)	$\frac{dy}{dx} = 3 - 3(x - 4)^{-4} \text{ o.e. isw}$ $\frac{d^2y}{dx^2} = (their \ 12)(x - 4)^{their \ (-5)} \text{ o.e.}$	B1 + B1 M1	
		$\frac{d^2 y}{dx^2} = 12(x-4)^{-5}$ o.e. isw	A1	if M0 then SC1 for $12(x-4)^{-5}$ + one other term
	(ii)	Verifies $\frac{dy}{dx} = 0$ when $x = 3$ and $x = 5$ or solves $3 - \frac{3}{(x-4)^4} = 0$ to obtain 3 and 5	M1	if M0 then SC1 for verifying or correctly solving to find one <i>x</i> coordinate and showing that it gives rise to the corresponding <i>y</i> coordinate
		Shows that $x = 3 \Rightarrow y = 8$ and $x = 5 \Rightarrow y = 16$	A1	Coordinate
	(iii)	$x = 5 \frac{d^2 y}{dx^2} $ (=12) > 0 \Rightarrow min or $x = 3 \frac{d^2 y}{dx^2} $ (=-12) < 0 \Rightarrow max	M1	or, using first derivative e.g. $ \begin{array}{c cccc} x & - & 5 & + \\ \hline dy & & 0 \\ \hline min at x = 5 or \begin{array}{c cccc} x & - & 3 & + \\ \hline dy & & 0 \\ \hline dx & & 0 \end{array} max at x = 3$
		Both correct cao	A1	
	(iv)	$\frac{3x^2}{2} - \frac{(x-4)^{-2}}{2} (+c)$ o.e. isw	B1 + B1	may be unsimplified
	(v)	their $ \left[\left(\frac{3(6)^2}{2} - \frac{1}{2(6-4)^2} \right) - \left(\frac{3(5)^2}{2} - \frac{1}{2(5-4)^2} \right) \right] $	M1	
		16.875 to 3 or more sf or $\frac{135}{8}$ or $16\frac{7}{8}$ cao	A1	