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Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation ax2 + bx + c = 0,

.

Binomial Theorem

(a + b)n = an + an–1 b + an–2 b2 + … + an–r br + … + bn,

where n is a positive integer and = .

2. TRIGONOMETRY

Identities

sin2 A + cos2 A = 1.

sec2 A = 1 + tan2 A.

cosec2 A = 1 + cot2 A.

Formulae for ∆ABC

= = .

a2 = b2 + c2 – 2bc cos A.

∆ = bc sin A.1
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1 Given that A = � � , find A–1 and hence solve the simultaneous equations

2x + 3y + 4 = 0

–5x + 4y + 13 = 0. [4]

2 Given that , where a and b are integers, find, without using a calculator, the value

of a and of b. [4]

3 The diagram shows part of the curve   y = 3sin 2x + 4cos x.

Find the area of the shaded region, bounded by the curve and the coordinate axes. [5]

4 Find the values of k for which the line   y = x + 2   meets the curve   y2 + (x + k)2 = 2. [5]

5 Solve the equation   log16 (3x – 1) = log4 (3x) + log4 (0.5). [6]

6 Given that   x = 3sinθ – 2cosθ and y = 3cosθ + 2sinθ,

(i) find the value of the acute angle θ for which x = y, [3]

(ii) show that   x2 + y2 is constant for all values of θ. [3]

7 Given that 6x3 + 5ax – 12a leaves a remainder of –4 when divided by x – a, find the possible values
of a. [7]

8 A motor boat travels in a straight line across a river which flows at 3 ms–1 between straight parallel
banks 200 m apart. The motor boat, which has a top speed of 6 ms–1 in still water, travels directly from
a point A on one bank to a point B, 150 m downstream of A, on the opposite bank. Assuming that the
motor boat is travelling at top speed, find, to the nearest second, the time it takes to travel from A to B.

[7]
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9 In order that each of the equations

(i) y = abx,

(ii) y = Axk,

(iii) px + qy = xy,

where a, b, A, k, p and q are unknown constants, may be represented by a straight line, they each need
to be expressed in the form   Y = mX + c, where X and Y are each functions of x and/or y, and m and c
are constants. Copy the following table and insert in it an expression for Y, X, m and c for each case.

[7]

10 The function f is defined by   f: x  � x2 – 8x + 7 � for the domain   3 � x � 8.

(i) By first considering the stationary value of the function  x  x2 – 8x + 7, show that the graph of 
y = f(x) has a stationary point at x = 4 and determine the nature of this stationary point. [4]

(ii) Sketch the graph of y = f(x). [2]

(iii) Find the range of f. [2]

The function g is defined by   g: x  � x2 – 8x + 7 � for the domain   3 � x � k.

(iv) Determine the largest value of k for which g–1 exists. [1]

11

The diagram shows a trapezium OABC, where O is the origin. The equation of OA is   y = 3x and the
equation of OC is   y + 2x = 0.   The line through A perpendicular to OA meets the y-axis at B and BC is
parallel to AO. Given that the length of OA is units, calculate the coordinates of A, of B and of C.

[10]
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12 Answer only one of the following two alternatives.

EITHER

A particle, travelling in a straight line, passes a fixed point O on the line with a speed of 0.5 ms–1. The
acceleration, a ms–2, of the particle, t s after passing O, is given by   a = 1.4 – 0.6t.

(i) Show that the particle comes instantaneously to rest when t = 5. [4]

(ii) Find the total distance travelled by the particle between t = 0 and t = 10. [6]

OR

Each member of a set of curves has an equation of the form  y = ax + , where a and b are integers.

(i) For the curve where a = 3 and b = 2, find the area bounded by the curve, the x-axis and the lines
x = 2 and x = 4. [4]

Another curve of this set has a stationary point at (2, 3).

(ii) Find the value of a and of b in this case and determine the nature of the stationary point. [6]

b
x2
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