# CAMBRIDGE

#### **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

International General Certificate of Secondary Education

## MARK SCHEME for the November 2003 question papers

| 0606 AD | DITIONAL MATHEMATICS         |
|---------|------------------------------|
| 0606/01 | Paper 1, maximum raw mark 80 |
| 0606/02 | Paper 2, maximum raw mark 80 |

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.



**Grade thresholds** taken for Syllabus 0606 (Additional Mathematics) in the November 2003 examination.

|             | maximum           | minimum | mark required | for grade: |
|-------------|-------------------|---------|---------------|------------|
|             | mark<br>available | A       | С             | E          |
| Component 1 | 80                | 63      | 31            | 21         |
| Component 2 | 80                | 67      | 36            | 26         |

Grade A\* does not exist at the level of an individual component.

| Page 1 | Mark Scheme                        | Syllabus |
|--------|------------------------------------|----------|
|        | IGCSE EXAMINATIONS – NOVEMBER 2003 | 0606     |

### Mark Scheme Notes

- Marks are of the following three types:
  - M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
  - A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
  - B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:
  - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
  - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
  - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
  - ISW Ignore Subsequent Working
  - MR Misread
  - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
  - SOS See Other Solution (the candidate makes a better attempt at the same question)

| Page 2 | Mark Scheme                        | Syllabus |
|--------|------------------------------------|----------|
|        | IGCSE EXAMINATIONS – NOVEMBER 2003 | 0606     |

## Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through  $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation.



November 2003

INTERNATIONAL GCSE

MARK SCHEME

**MAXIMUM MARK: 80** 

SYLLABUS/COMPONENT: 0606/01

**ADDITIONAL MATHEMATICS** Paper 1



UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

| Page 1 Mark Sch                                                                                                                                                                                                                                                                                                                                                                                                   | neme                                      | Syllabus Paper                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| IGCSE EXAMINATIONS – NOVEMBER 2003 0606 1                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| 1. $x + 3y = k$ and $y^2=2x + 3$<br>Elimination of x or y<br>$\rightarrow y^2 + 6y - (2k+3)=0$ or<br>$\rightarrow x^2 - (2k + 18)x + (k^2 - 27) = 0$<br>Uses $b^2 - 4ac$<br>$\rightarrow k < -6$                                                                                                                                                                                                                  | M1<br>A1<br>M1<br>A1<br>[4]               | x or y must go completely, but allow<br>for simple arithmetic or numeric slips<br>co<br>Any use of b <sup>2</sup> –4ac, even if =0 or >0<br>co                                       |  |  |  |  |  |  |  |  |
| 2. $8^{-x} = 2^{-3x}$ $4^{\frac{1}{2}x} = 2^{x}$<br>Attempts to link powers of 2<br>$\rightarrow x -3 - (-3x) = 5 - (x)$<br>$\rightarrow x = 1.6 \text{ or } 8/5 \text{ etc}$<br>[ $\log 8^{-x} = -3x\log 2$ , $\log 4^{\frac{1}{2}x} = x\log 2$<br>equate coefficients of $\log 2$ ]                                                                                                                             | B1 B1<br>M1<br>A1<br>[B1B1<br>M1A1]       | Wherever used<br>Needs to use x <sup>a</sup> ÷x <sup>b</sup> =x <sup>a-b</sup><br>co                                                                                                 |  |  |  |  |  |  |  |  |
| 3. $x^3 + ax^2 + bx - 3$<br>Puts x=3 → 27+9a+3b-3=0<br>Puts x=-2 → -8+4a-2b-3=15<br>(9a+3b=-24 and 4a-2b=26)<br>Sim equations → a = 1 and b = -11                                                                                                                                                                                                                                                                 | M1A1<br>M1A1<br>A1<br>[5]                 | Needs x=3 and =0 for M mark<br>Needs x=-2 and =15 for M mark<br>(A marks for unsimplified)<br>co                                                                                     |  |  |  |  |  |  |  |  |
| 4. $(\sqrt{3}-\sqrt{2})^2 = 5 - 2\sqrt{6} \text{ or } 5 - 2\sqrt{2}\sqrt{3}$<br>Divides volume by length <sup>2</sup><br>$\frac{4\sqrt{2} - 3\sqrt{3}}{5 - 2\sqrt{6}} \times \frac{5 + 2\sqrt{6}}{5 + 2\sqrt{6}}$<br>Denominator = 1<br>Numerator = $20\sqrt{2} - 15\sqrt{3} + 8\sqrt{12} - 6\sqrt{18}$<br>But $\sqrt{12} = 2\sqrt{3}$ and $\sqrt{18} = 3\sqrt{2}$<br>$\rightarrow 2\sqrt{2} + \sqrt{3}$          | B1<br>M1<br>M1<br>M1<br>A1<br>[5]         | Co anywhere<br>V÷l <sup>2</sup> used<br>× by denominator with sign changed<br>Correct simplification somewhere with<br>either of these<br>co                                         |  |  |  |  |  |  |  |  |
| 5<br>$y=0 \text{ when } 3x + \frac{1}{4}\pi = \pi$ $\rightarrow x = \frac{1}{4}\pi$ $\int 6\sin(3x+\pi/4) dx = -6\cos(3x+\pi/4) \div 3$ Between 0 and $\frac{\pi}{4}$ $\rightarrow 2 + \sqrt{2} \text{ or } 3.41$                                                                                                                                                                                                 | B1<br>M1<br>A2,1<br>DM1<br>A1<br>[6]      | Co. Allow 45°<br>Knows to integrate. Needs "cos".<br>All correct, including ÷3, ×6 and -ve<br>Uses limits correctly – must use x=0<br>In any form – at least 3sf                     |  |  |  |  |  |  |  |  |
| <ul> <li>6 Wind 50i- 70j V(still air) = 280i -40j</li> <li>(i) Resultant velocity = v<sub>air</sub> + w <ul> <li>→ 330i - 110j</li> <li>tan<sup>-1</sup>(110/330) = 18.4°</li> <li>→ Bearing of Q from P = 108°</li> </ul> </li> <li>(ii) Resultant speed = √(330<sup>2</sup>+110<sup>2</sup>) <ul> <li>Time = 273 ÷ resultant speed</li> <li>= 47 minutes</li> </ul> </li> <li>Scale drawings are ok.</li> </ul> | M1<br>A1<br>DM1<br>A1<br>M1<br>A1√<br>[6] | Connecting two vectors (allow −)<br>Co (Could get these 2 marks in (ii) )<br>For use of tangent (330/110 ok)<br>co<br>Use of Pythagoras with his<br>components<br>For 273 ÷ √(a²+b²) |  |  |  |  |  |  |  |  |

| Page 2 Mark Sch                                                                                                                                                                                                                                                                                                                                                                                               |                                   | Syllabus Paper                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IGCSE EXAMINATIONS                                                                                                                                                                                                                                                                                                                                                                                            | - NOVEME                          | BER 2003 0606 1                                                                                                                                                                                                                                                                      |
| $7  (0.6  0.2  0.5) \times \begin{pmatrix} 8 & 6 & 6 & 5 \\ 5 & 4 & 3 & 2 \\ 3 & 3 & 2 & 2 \end{pmatrix} \times \begin{pmatrix} 40 \\ 50 \\ 50 \\ 60 \end{pmatrix}$ $(40)$                                                                                                                                                                                                                                    | B2,1,0                            | Wherever 3 matrices come – as row or<br>column matrices – as 3 by 4 or 4 by 3<br>– independent of whether they are<br>compatible for multiplication or not.                                                                                                                          |
| $= (7.3 \ 5.9 \ 5.2 \ 4.4) \times \begin{pmatrix} 10 \\ 50 \\ 50 \\ 60 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                         | M1 A1                             | Correct method for multiplying any 2 of the 3 - co for A mark.                                                                                                                                                                                                                       |
| or $(0.6 \ 0.2 \ 0.5) \times \begin{pmatrix} 1220\\ 670\\ 490 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                  | M1                                | Correct method for remaining two.                                                                                                                                                                                                                                                    |
| → \$1111                                                                                                                                                                                                                                                                                                                                                                                                      | B1<br>[6]                         | Co – even if from arithmetic.                                                                                                                                                                                                                                                        |
| 8<br>(i) d/dx(lnx) = 1/x                                                                                                                                                                                                                                                                                                                                                                                      | B1                                | Anywhere, even if not used in "u/v"                                                                                                                                                                                                                                                  |
| $\frac{dy}{dx} = \frac{(2x+3) \times \frac{1}{x} - (\ln x) \times 2}{(2x+3)^2}$ (ii) $\delta y = (dy/dx) \times \delta x = 0.2p$ (iii) $dy/dt = dy/dx \times dx/dt$<br>$\rightarrow dx/dt = 0.6$                                                                                                                                                                                                              | M1A1√<br>M1A1<br>M1<br>A1√<br>[7] | Uses correct formula. All ok. Could<br>use product formula. A mark<br>unsimplified.<br>Allow if $\delta y$ mixed with dy/dt. M mark<br>given for algebraic dy/dx × p.<br>Allow if dy/dt mixed with $\delta y$<br>$\sqrt{for 0.12 \div his dy/dx}$ . Condone use of<br>$\delta x$ etc |
| 9 (a) Uses sec <sup>2</sup> x = 1+tan <sup>2</sup> x $\rightarrow$ quad in sec<br>or $\times$ c <sup>2</sup> then uses s <sup>2</sup> +c <sup>2</sup> =1 $\rightarrow$ quad in cos<br>$\rightarrow$ 4sec <sup>2</sup> x+8secx-5=0<br>$\rightarrow$ -5cos <sup>2</sup> x+8cosx+4=0<br>$\rightarrow$ secx = -2.5 (or0.5) or cosx=-0.4 (or2)<br>$\rightarrow$ x = 113.6° or 246.4°<br>(b) tan(2)+1) = 16/5 = 3.2 | B1<br>M1<br>A1A1√                 | Co.<br>Sets to 0 and uses correct method for<br>solution of a 3 term quadratic in sec or<br>cos.<br>A1 co. A1√ for 360°−"first ans" only.                                                                                                                                            |
| (b) $\tan(2y+1) = 16/5 = 3.2$<br>Basic angle associated with 3.2 = 1.27<br>Next angle = $\pi$ + 1.27 and $2\pi$ + 1.27<br>(Value - 1) ÷ 2 $\rightarrow$ 3.28<br>(others are 0.134 and 1.705)                                                                                                                                                                                                                  | B1<br>M1<br>M1A1<br>[8]           | Anywhere (allow 72.6°)<br>Realising the need to add on $\pi$ and/or $2\pi$<br>Correct order used ie -1, then ÷2 for<br>any correct value. Allow if all 3 values<br>are given, providing none are over 4.<br>(degrees – max 2/4 B1, M0, M1, A0)                                       |

| Page 3                                                      | Mark Sch                                                                                       |                       |                                                                 | Syllabus                                                                                                     | Paper         |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------|--|
|                                                             | IGCSE EXAMINATIONS                                                                             |                       | DER 2003                                                        | 0606                                                                                                         | 1             |  |
| 10 f(x) = 5-3e                                              | <sup>1/2</sup> X                                                                               |                       |                                                                 |                                                                                                              |               |  |
| (i) Range                                                   | is <5                                                                                          | B1                    | Allow ≤ or <                                                    |                                                                                                              |               |  |
| · · ·                                                       | $e^{5} = 0 \rightarrow e^{\frac{1}{2}x} = \frac{5}{3}$<br>or calculator $\rightarrow x = 1.02$ | M1A1                  | Normally 2,0 but if working shown, car<br>get M1 if appropriate |                                                                                                              |               |  |
| (iii)                                                       | (1.02, 0) and (0, 2)                                                                           | B1<br>B1√             | Shape in 1 <sup>st</sup> qu<br>Both shown or                    |                                                                                                              | statement.    |  |
| (iv) e <sup>½x</sup> = (<br>x/2 = I<br>f <sup>1</sup> (x) = | 5 - y)÷3<br>n[(5-y)/3]<br>: 2ln[(5-x)/3]                                                       | M1<br>M1<br>A1<br>[8] | Using logs.                                                     | Reasonable attempt $e^{\frac{1}{2}x}$ as the subject.<br>Using logs.<br>All ok, including x, y interchanged. |               |  |
| 11                                                          |                                                                                                |                       |                                                                 |                                                                                                              |               |  |
|                                                             | (i) y=½x and y=3x-15<br>→ C(6,3)                                                               | M1<br>A1              | Soln of simulta<br>Co (or step me                               |                                                                                                              |               |  |
|                                                             | OB=OC+CB                                                                                       | M1                    | Vectors, step                                                   | or soln of y=                                                                                                | ½x+5 and      |  |
|                                                             | → B(8,9)                                                                                       | A1√                   | y=3x-15<br>From his C                                           |                                                                                                              |               |  |
| m of OC = ½,<br>eqn of AD is y                              | m of AD = −2<br>⁄-6=−2(x−2) or y=−2x+10                                                        | M1<br>A1              | use of m1m2=-1 (M0 if perp to y=3x)<br>Co – unsimplified.       |                                                                                                              |               |  |
| Soln of y=½x                                                | and eqn of AD $\rightarrow$ D(4,2)                                                             | M1A1                  | Sol of simultaneous eqns. co.                                   |                                                                                                              |               |  |
|                                                             | $c = \sqrt{45}$ , OA = $\sqrt{40}$<br>OABC = 2( $\sqrt{45} + \sqrt{40}$ )                      | M1<br>M1<br>A1        | Once.<br>Adding OA,AB,BC,CO<br>Co.                              |                                                                                                              |               |  |
|                                                             |                                                                                                | [11]                  |                                                                 |                                                                                                              |               |  |
| 12 EITHER                                                   |                                                                                                |                       |                                                                 |                                                                                                              |               |  |
|                                                             | πr + 2x + 2(5r/4)<br>= ½(125 – πr – 5r/2)                                                      | M1<br>A1              | Attempt at 4/5<br>Co.                                           | lengths.                                                                                                     |               |  |
|                                                             | h = 3r/4                                                                                       | M1                    | Anywhere in th                                                  |                                                                                                              |               |  |
| Area of triar                                               | ngle = $\frac{1}{2} \times 2r \times 3r/4 = 3r^2/4$                                            | M1                    | independent o<br>Use of ½bh wi                                  |                                                                                                              |               |  |
| A = ½πr² + ½<br>= 125r - 1                                  | 2rx +<br>½πr² -7r²/4                                                                           | B1<br>A1              | Correct ½πr² -<br>Answer given                                  |                                                                                                              | rtuitous ans. |  |
| (ii) dA/                                                    | dr = 125 – πr –7r/2                                                                            | M1A1                  | Any attempt to differentiate. Co.                               |                                                                                                              |               |  |
| Solv                                                        | red = 0 to give                                                                                | DM1                   | Setting his diff                                                | erential to 0                                                                                                |               |  |
| → r = 250                                                   | ) / (2π + 7) or 18.8                                                                           | A1                    | Any correct for                                                 | rm.                                                                                                          |               |  |
|                                                             |                                                                                                | [10]                  |                                                                 |                                                                                                              |               |  |

| Page 4                    | Mark Sc                                                                                           |            |                                                             | Syllabus        | Paper   |
|---------------------------|---------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------|-----------------|---------|
|                           | IGCSE EXAMINATIONS                                                                                | BER 2003   | 0606                                                        | 1               |         |
| 40.05                     |                                                                                                   |            |                                                             |                 |         |
| 12 <b>OR</b><br>(i)       | h / (12-r) = 30 / 12                                                                              | M1         | Use of similar<br>lengths correc                            |                 | eeds ¾  |
|                           | $\rightarrow$ h = 5(12-r) / 2                                                                     | A1         | Correct in any subject                                      |                 | ls h as |
|                           | Uses V=πr²h to give                                                                               | M1         | Needs correct                                               | formula         |         |
|                           | $\rightarrow$ V = $\pi(30r^2 - 5r^3/2)$                                                           | A1         | Beware fortuit                                              | ous answers     | s (AG)  |
| (ii) dV/dr =              | = π(60r − 15r²/2)                                                                                 | M1A1       | Any attempt to                                              | o differentiate | e. co   |
| = 0 wł                    | hen r = 8 $\rightarrow$ h = 10                                                                    | DM1        | Setting his dV/dr to 0 + attempt.                           |                 |         |
| $\rightarrow$ V :         | = 640π or 2010                                                                                    | A1         | Correct to 3 or more sig figures                            |                 |         |
|                           | ne of cone = ⅓π×12²×30<br>40π or 4520                                                             | M1         | Anywhere                                                    |                 |         |
| Ratio                     | of 4 : 9 or 1 : 2.25 (3 sf)                                                                       | A1<br>[10] | Exactly 4:9 or                                              | 2.25 to 3 sig   | figures |
| DM1 for quade             | ratic equation                                                                                    |            |                                                             |                 |         |
| Sets t<br>Formu<br>correc | ormula.<br>he equation to 0<br>ala must be correct and<br>stly used.<br>one simple slips in sign. |            | (2) Factors<br>Sets the equ<br>Attempts to c<br>Solves each | obtain bracke   |         |



November 2003

**INTERNATIONAL GCSE** 

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02

**ADDITIONAL MATHEMATICS** Paper 2



| Pa    | ge 1  | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Syllabus   | Paper    |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
|       |       | IGCSE EXAMINATIONS – NOVEMBER 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0606       | 2        |
| 1 [4] |       | Eliminate x or y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | M1       |
|       |       | $\Rightarrow y^2 - 8y + 15 = 0$ $x^2 - 10x + 9 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |
|       |       | Factorise or formula $\Rightarrow$ (1, 3) and (9, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | DM1 A1   |
|       |       | Midpoint is (5, 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | B1 √     |
| 2 [4] |       | $\cos \theta \left(\frac{1+\sin\theta - (1-\sin\theta)}{1-\sin^2\theta} = \cos\theta \left(\frac{2\sin\theta}{1-\sin^2\theta}\right) = \frac{2\sin\theta\cos\theta}{1-\sin^2\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )          | M1 A1    |
|       |       | Use of Pythagoras $\Rightarrow \frac{2\sin\theta\cos\theta}{\cos^2\theta} = 2\tan\theta \Rightarrow k = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | B1 A1    |
| 3 [4] |       | $\log_2 x = 2\log_4 x$ or $\log_4 (x - 4) = \frac{1}{2} \log_4 x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $g_2(x-4)$ | B1       |
|       |       | $2\log_4 x - \log_4 (x - 4) = 2$ or $\log_2 x - \frac{1}{2} \log_2 (x - 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4) = 2     |          |
|       |       | Eliminate logs $\frac{x^2}{x-4} = 16$ or $\frac{x}{\sqrt{x-4}} = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | M1 A1    |
|       |       | Solve for $x \implies x = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | A1       |
| 4 [4] | (i)   | Contraction of the second seco |            | B2 B1 B1 |
|       | (ii)  | $A \cap B' \cap C'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |
|       | (iii) | $B \cup (A \cap C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |
| 5 [5] | (i)   | $243x^5 - 405x^4 + 270x^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | B1 B1 B1 |
|       | (ii)  | Coefficient of $x^4 = (-405 \times 1) + (270 \times 2) = 135$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | M1 A1    |
| 6 [6] |       | At B, $v = 40$ (e <sup>-t</sup> - 0.1) = 0 $\Rightarrow$ e <sup>-t</sup> = 0.1 $\Rightarrow$ t = ln 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 (=2.30)  | M1 A1    |
|       |       | $\int 40 (e^{-t} - 0.1) dt = 40 (-e^{-t} - 0.1t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | M1 A1    |
|       |       | $AB = \int_{0}^{\log 10} = 40 \left[ \left( -\frac{1}{10} - \frac{\ln 10}{10} \right) - \left( -1 \right) \right] = 4(9 - \ln 10) \approx 26.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | DM1 A1   |

| Pa      | ge 2                                              | Mark Scheme Syllabus                                                                                                                                                                                          | Paper  |  |  |  |  |  |
|---------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|
|         |                                                   | IGCSE EXAMINATIONS – NOVEMBER 2003 0606                                                                                                                                                                       | 2      |  |  |  |  |  |
| 7 [7]   |                                                   | Dealing with elements $\begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix}$ and $\begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$                                                                                    | M1     |  |  |  |  |  |
|         |                                                   | $\mathbf{A}^{-1} = -\frac{1}{2} \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} \qquad \mathbf{B}^{-1} = \frac{1}{8} \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix}$                                            | A1 A1  |  |  |  |  |  |
|         | (i)                                               | <b>C</b> = <b>B</b> - 2 <b>A</b> <sup>-1</sup> = $\begin{pmatrix} 2 & 1 \\ -2 & 3 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -5 & 7 \end{pmatrix}$            | M1 A1  |  |  |  |  |  |
|         | (ii)                                              | $\mathbf{D} = \mathbf{B}^{-1}\mathbf{A} = \frac{1}{8} \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 9 & 5 \\ 14 & 6 \end{pmatrix}$ | M1 A1  |  |  |  |  |  |
| 8 [7]   | (i)                                               | $\frac{10!}{6!4!} = \frac{10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4} = 210$                                                                                                                 |        |  |  |  |  |  |
|         | (ii) No pink selected i.e. any 6 from (5 + 2) = 7 |                                                                                                                                                                                                               |        |  |  |  |  |  |
|         | (iii)                                             | All selections contain at least 1 red                                                                                                                                                                         |        |  |  |  |  |  |
|         |                                                   | No yellow selected i.e. any 6 from $(3 + 5) = \frac{8!}{6!2!} = 28$                                                                                                                                           | M1 A1  |  |  |  |  |  |
|         |                                                   | At least 1 of each colour – 120 – (7 + 28) = 175                                                                                                                                                              | M1 A1  |  |  |  |  |  |
| 9 [8]   | (i)                                               | $\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{4x-3}\right) = \left(4x-3\right)^{-\frac{1}{2}} \times \frac{1}{2} \times 4$                                                                                       | M1 A1  |  |  |  |  |  |
|         |                                                   | $\frac{\mathrm{d}}{\mathrm{d}x}\left\{(2x+3)\sqrt{4x-3}\right\} = \left(2x+3\right)\left(\frac{2}{\sqrt{4x-3}}\right) + 2\sqrt{4x-3}$                                                                         | M1 A1√ |  |  |  |  |  |
|         |                                                   | $=\frac{12x}{\sqrt{4x-3}} \Longrightarrow k=12$                                                                                                                                                               | A1     |  |  |  |  |  |
|         | (ii)                                              | $\int \frac{x}{\sqrt{4x-3}}  \mathrm{d}x = (2x+3)\sqrt{4x-3} \times \frac{1}{12}$                                                                                                                             | M1 A1  |  |  |  |  |  |
|         |                                                   | $\int \frac{x}{\sqrt{4x-3}}  \mathrm{d}x = (2x+3)\sqrt{4x-3} \times \frac{1}{12}$ $\int_{1}^{7} = \frac{1}{2} (85-5) = 6\frac{2}{3}$                                                                          | A1     |  |  |  |  |  |
| 10 [10] |                                                   | (i) ∠AOB = 19.2 + 16 = 1.2                                                                                                                                                                                    | M1 A1  |  |  |  |  |  |
|         |                                                   | (ii) <i>DE</i> = 8 sin 1.2 ≈ 7.46                                                                                                                                                                             | M1 A1  |  |  |  |  |  |
|         | 1                                                 | (iii) $\angle DOE = \sin^{-1} (7.46 \div 16) \approx 0.485 (AG)$                                                                                                                                              | M1 A1  |  |  |  |  |  |
|         | 16                                                | (iv) Sector $DOB = \frac{1}{2} \times 16^2 \times 0.485 = 62.08$                                                                                                                                              | M1     |  |  |  |  |  |
|         | /                                                 | Length $OE = \sqrt{(16^2 - 7.46^2)} \approx 14.2$                                                                                                                                                             | M1     |  |  |  |  |  |
|         | * 4                                               | $\Delta DOE = \frac{1}{2} \times 7.46 \times 14.2 \approx 52.97$                                                                                                                                              | M1     |  |  |  |  |  |
|         |                                                   | Shaded area $\approx 9.1 - 9.3$ (9.275)                                                                                                                                                                       | A1     |  |  |  |  |  |

|     | Page 3 Mark Scheme Syllabus Pag |       |                                  | Paper             | •                 |                      |                             |                   |                                            |                           |         |      |
|-----|---------------------------------|-------|----------------------------------|-------------------|-------------------|----------------------|-----------------------------|-------------------|--------------------------------------------|---------------------------|---------|------|
|     |                                 |       |                                  | IGCS              | E EXA             |                      |                             |                   | BER 2003                                   | 0606                      | 2       |      |
|     |                                 |       |                                  |                   |                   |                      |                             |                   |                                            |                           |         |      |
| 11  | [10]                            |       | V                                | 5                 | 10                | 15                   | 20                          | 25                | (i) Plotting lg R                          | against lg v              | M1      |      |
|     |                                 |       | R                                | 32                | 96                | 180                  | 290                         | 420               | Accuracy of poir                           | nts: Straight I           | ine A2, | 1, 0 |
|     |                                 |       | lg v                             | 0.70              | 1.00              | 1.18                 | 1.30                        | 1.40              | (ii) $R = k v^{\beta} \Rightarrow lg$      | $gR = \lg k + \beta$      | lg v B1 |      |
|     |                                 |       | lg R                             | 1.51              | 1.98              | 2.26                 | 2.46                        | 2.61              | $\beta$ = gradien                          | t ≈ 1.55 - 1.6            | 0 M1    | A1   |
|     |                                 |       |                                  |                   |                   |                      | lg <i>k</i> =               | = lg <i>R</i> i   | ntercept $\approx 0.4 =$                   | ⇒ <i>k</i> ≈ 2.4 - 2      | .6 M1   | A1   |
|     |                                 | (iii) | lg R :                           | = lg 75           | i ≈ 1.88          | $B \Rightarrow from$ | m grapł                     | h lg <i>v</i> ≈   | 0.92 - 0.96 ⇒                              | v ≈ 8.3 - 9.1             | M1      | A1   |
|     |                                 |       | [Or b                            | y solvi           | ng e.g            | ., 75                | = 2.5 <i>v</i> <sup>1</sup> | <sup>.58</sup> or | 1.88 = 0.4 +                               | 1.58 lg <i>v</i> ]        |         |      |
| EIT | 2<br>HER<br> 1]                 | (i)   | $gf(x) = \frac{4}{2 - (3x - 2)}$ |                   |                   |                      |                             |                   | B1                                         |                           |         |      |
|     |                                 |       | Solve                            | $e \frac{4}{4-3}$ | $\frac{1}{x} = 2$ |                      | [or so                      | olve fg()         | $x)=3\left(\frac{4}{2-x}\right)-$          | 2 = 2]                    | M1      |      |
|     |                                 |       | $\Rightarrow$ X :                | = 2/3             |                   |                      |                             |                   |                                            |                           | A1      |      |
|     |                                 | (ii)  | f( <i>x</i> ) =                  | = g(x) =          | ⇒ 3 <i>x</i> –    | $2 = \frac{4}{2}$    | $\frac{1}{x} \Rightarrow 3$ | $8x^2 - 8x$       | (+ 8 = 0                                   |                           |         |      |
|     |                                 |       | Discr                            | iminar            | nt = 64           | - 96 <               | 0                           | $\Rightarrow$     | No real roc                                | ots                       | M1      | A1   |
|     |                                 | (iii) | f <sup>−1</sup> : x              | $x\mapsto (x)$    | + 2) ÷            | 3                    |                             |                   |                                            |                           | B1      |      |
|     |                                 |       | <i>y</i> = 4                     | / (2 –            | <i>x</i> )        | $\Rightarrow$ )      | x = 2 - 4                   | 4/y               | $\Rightarrow$ g <sup>-1</sup> : x $\vdash$ | → 2 – 4/x                 | M1      | A1   |
|     |                                 | (iv)  | 1                                | 1                 | 1                 | tr                   |                             |                   |                                            |                           | B1      | B1   |
|     |                                 |       |                                  | 1                 | X                 |                      |                             |                   | Lines inte                                 | rsect at (1, <sup>-</sup> | 1) B1   |      |

| Page 4 | Mark Scheme                        | Syllabus | Paper |
|--------|------------------------------------|----------|-------|
|        | IGCSE EXAMINATIONS – NOVEMBER 2003 | 0606     | 2     |

| 12 OR<br>[11] | (i)   | $1 - x^2 + 6x \equiv a - (x + b)^2 \equiv a - x^2 - 2bx - b^2 \Rightarrow a - b^2 \equiv 1 \text{ and } -2b \equiv 6$ | M1 A   | .1  |
|---------------|-------|-----------------------------------------------------------------------------------------------------------------------|--------|-----|
|               |       | [or $1 - x^2 + 6x \equiv 1 - (x^2 - 6x) \equiv 1 - \{(x - 3)^2 - 9\}$ ]                                               |        |     |
|               |       | $\Rightarrow$ b = -3, a = 10                                                                                          | A1     |     |
|               | (ii)  | $1 - x^2 + 6x \equiv 10 - (x - 3)^2 \implies$ Maximum at (3, 10)                                                      |        |     |
|               |       | $\therefore$ Single-valued for $x \ge 3$ and hence for $x \ge 4$                                                      | M1 A   | .1  |
|               | (iii) | $y = 10 - (x - 3)^2 \implies (x - 3)^2 = 10 - y \implies x - 3 = \sqrt{(10 - x)}$                                     | M1     |     |
|               |       | $\Rightarrow f^{-1}: x \mapsto 3 + \sqrt{(10 - x)}$                                                                   | A1     |     |
|               | (iv)  | When $x = 2$ , $g(x) = 9$ and when $x = 7$ , $g(x) = -6$                                                              | B1     |     |
|               |       | Range of g is $-6 \le g \le 10$                                                                                       | B1     |     |
|               | (v)   |                                                                                                                       | B 2, 1 | , 0 |