

Example Candidate Responses

Cambridge International AS and A Level Physics

9702

Paper 5 – Planning, Analysis and Evaluation

In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of Cambridge Curriculum Support resources are very important to us.

https://www.surveymonkey.co.uk/r/GL6ZNJB

Do you want to become a Cambridge consultant and help us develop support materials?

Please follow the link below to register your interest.

http://www.cie.org.uk/cambridge-for/teachers/teacherconsultants/

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.

Contents

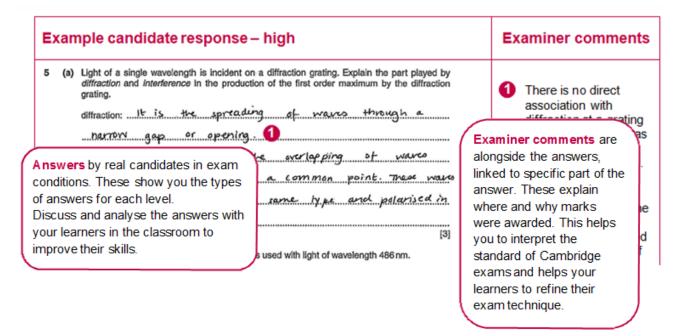
Contents	3
Introduction	4
Assessment at a glance	6
Paper 5 – Planning, Analysis and Evaluation	8
Question 1	8
Question 2	18

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS & A Level Physics (9702), and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, each response is annotated with a clear explanation of where and why marks were awarded or omitted. This, in turn, is followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their answers. At the end there is a list of common mistakes candidates made in their answers for each question.


This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

The questions, mark schemes and pre-release material used here are available to download as a zip file from Teacher Support as the Example Candidate Responses Files. These files are:

Question Paper 22, June 2016			
Question paper	9702_s16_qp_22.pdf		
Mark scheme	9702_s16_ms_22.pdf		
Question Paper	33, June 2016		
Question paper	9702_s16_qp_33.pdf		
Mark scheme	9702_s16_ms_33.pdf		
Question Paper 42, June 2016			
Question paper	9702_s16_qp_42.pdf		
Mark scheme	9702_s16_ms_42.pdf		
Question Paper 52, June 2016			
Question paper	9702_s16_qp_52.pdf		
Mark scheme	9702_s16_ms_52.pdf		

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at https://teachers.cie.org.uk

How to use this booklet

How the candidate could have improved their answer

(a) The question was an application of diffraction a needed to apply their knowledge to the application interference needed to be applied to the production applications as well as learning basic theory is requ

This explains how the candidate could have improved their answer and helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

(b) The diffraction grating equation was used and the given data interpreted correctly. There was a mathematical error in the calculation and the final answer was not realistic. The candidate needed to be more familiar with likely values for applications of basic theory.

Common mistakes candidates made in this question

(a) Diffraction was described as the bending of light. diffraction is a wave property and hence diffraction a have passed through the diffraction element. The eff was not described for this specific example. This lists the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes at the exam and give them the best chance of achieving a high mark.

(b) The angle given on the diagram was used as the angle σ in the difference of ten errors converting d in metres to N in mm⁻¹.

Assessment at a glance

Candidates for Advanced Subsidiary (AS) certification take Papers 1, 2 and 3 in a single examination series.

Candidates who, having received AS certification, wish to continue their studies to the full Advanced Level qualification may carry their AS marks forward and take Papers 4 and 5 in the examination series in which they require certification.

Candidates taking the full Advanced Level qualification at the end of the course take all five papers in a single examination series.

Candidates may only enter for the papers in the combinations indicated above.

Candidates may not enter for single papers either on the first occasion or for resit purposes.

All components are externally assessed.

Component		Weighting	
		A Level	
Paper 1 Multiple Choice 1 hour 15 minute	s		
This paper consists of 40 multiple choice questions, all with four options. All questions will be based on the AS Level syllabus content. Candidates will answer all questions.	31%	15.5%	
Candidates will answer on an answer sheet. [40 marks	s]		
Paper 2 AS Level Structured Questions 1 hour 15 minute	s		
This paper consists of a variable number of questions of variable mark value. A questions will be based on the AS Level syllabus content. Candidates will answer all questions.	ll 46%	23%	
Candidates will answer on the question paper. [60 marks	s]		
Paper 3 Advanced Practical Skills 2 hour	s		
This paper requires candidates to carry out practical work in timed conditions. The paper will consist of two experiments drawn from different areas of physics. The experiments may be based on physics not included in the syllabus content but candidates will be assessed on their practical skills rather than their knowledge of theory. Candidates will answer both questions.		11.5%	
Candidates will answer on the question paper. [40 marks	s]		
Paper 4 A Level Structured Questions 2 hour	's		
This paper consists of a variable number of questions of variable mark value. A questions will be based on the A Level syllabus but may require knowledge of material first encountered in the AS Level syllabus. Candidates will answer all questions.	II	38.5%	
Candidates will answer on the question paper. [100 marks	s]		

Component		Weighting	
		A Level	
Paper 5 Planning, Analysis and Evaluation 1 hour 15 minutes			
This paper consists of two questions of equal mark value based on the practical skills of planning, analysis and evaluation. The context of the questions may be outside the syllabus content, but candidates will be assessed on their practical skills of planning, analysis and evaluation rather than their knowledge of theory. Candidates will answer both questions.	_	11.5%	
Candidates will answer on the question paper. [30 marks]			

Teachers are reminded that the latest syllabus is available on our public website at **www.cie.org.uk** and Teacher Support at **https://teachers.cie.org.uk**

Paper 5 - Planning, Analysis and Evaluation

Question 1

Example candidate response - high **Examiner comments** A student is investigating the acceleration of a trolley moving up an inclined plane as shown in inclined plane trolley bench Fig. 1.1 The student is investigating the relationship between the acceleration a of the trolley and the angle θ of the inclined plane when a force F is applied to the trolley. It is suggested that the relationship is $ma = F - (mg \sin \theta + k)$ where g is the acceleration of free fall, m is the mass of the trolley and k is a constant. Design a laboratory experiment to test the relationship between a and θ . Explain how your results could be used to determine a value for k. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to the procedure to be followed, The candidate has the measurements to be taken, used the given the control of variables, relationship to the analysis of the data, rearrange it so that it matches the equation any safety precautions to be taken. [15] of a straight line. It is assumed that the candidate is using c for the y-intercept.

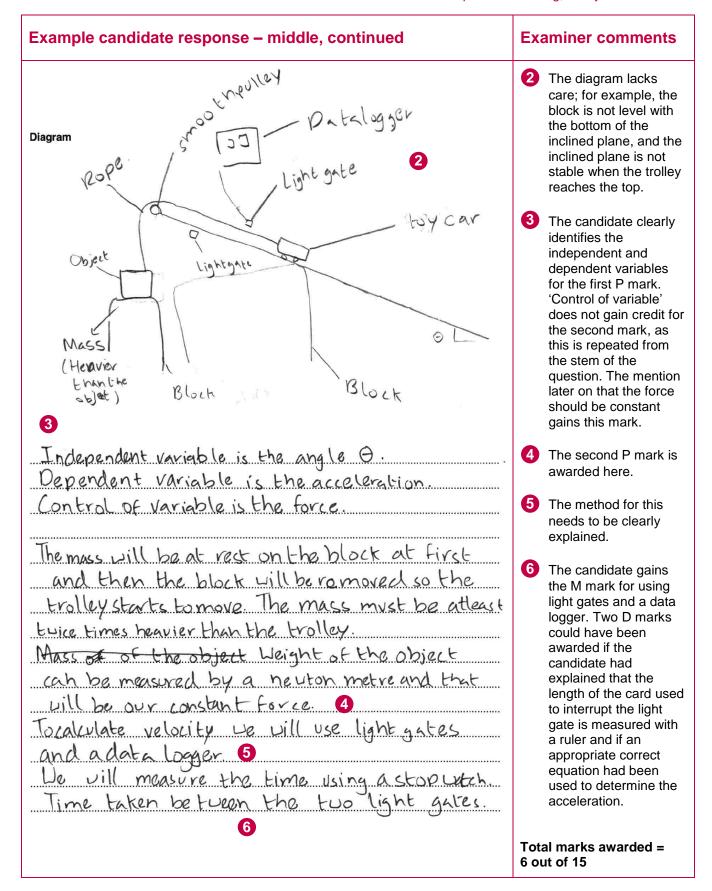
Example candidate response - high, continued Diagram ndenendant

Examiner comments

- The candidate gains the first mark for a clearly labelled diagram which includes a method to support the inclined plane. The drawing of the protractor should indicate the angle being measured. There is no need to draw items such as stopwatches.
- The candidate clearly indicates the independent and dependent variables for the first P mark. The candidate realises that the mass of the trolley needs to be constant, which gains a D mark, but does not gain the second P mark for keeping the force constant.
- 4 The method to measure the angle is clearly explained, using an appropriate instrument.
- The candidate gains a mark for measuring the time with the stop-watch shown in the diagram above, although it would have been better to mention the stopwatch in this sentence. Measuring the length of the ramp is too vague for credit to be given.

Example candidate response - high, continued **Examiner comments** 6 Speed camera is not Camera and detector worthy of credit. dividina shanao. The equation does not Kinal veloitty - Initial velociti gain credit on its own; an appropriate. time taken. workable method is needed to determine a. another magnet with the retord stand. The force of will provide the attraction move up the inclined rann Three marks are awarded for a clear analysis section. An Mainet appropriate graph is suggested and the candidate has identified the condition for the relationship to be valid. 8 A D mark is awarded for correctly identifying the y-intercept or for correctly rearranging the equation on page 2. The third A mark is hards. Wear thick the a sand tray The awarded for correctly fall into identifying k. falling Deceleration change. A safety precaution is credited in the additional detail Sheed Changes section. determina The candidate also scores the second P mark for the last munum sentence. some and there from Total marks awarded = [Total: 15] 11 out of 15 9

How the candidate could have improved their answer


The candidate could have included more detail on methods of data collection, for example, the mass of the trolley needed to be measured. Furthermore, the determination of the acceleration should have been more detailed and included laboratory measurements, with a relevant equation using the measurements suggested.

There could also have been more additional detail, e.g. an explanation of how the force would be kept constant and detail on repeating the experiment for each angle.

Mark awarded for defining the Problem (P) = 2 out of 2 Mark awarded for Methods of data collection (M) = 3 out of 4 Mark awarded for method of Analysis (A) = 3 out of 3 Mark awarded for additional Detail (D) = 3 out of 6

Total marks awarded = 11 out of 15

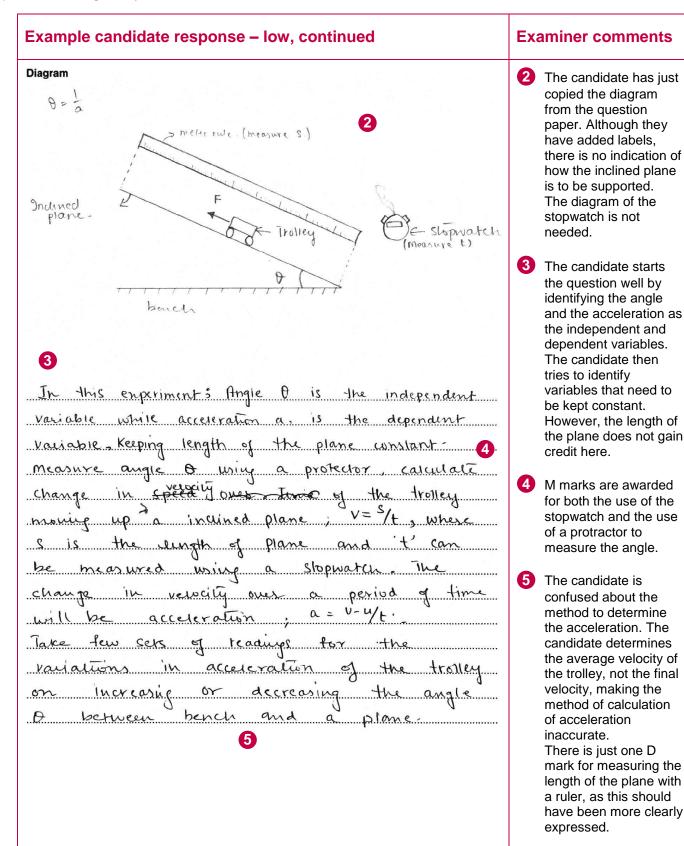
Example candidate response - middle **Examiner comments** A student is investigating the acceleration of a trolley moving up an inclined plane as shown in Fig. 1.1. inclined plane θ bench Fig. 1.1 The student is investigating the relationship between the acceleration a of the trolley and the angle θ of the inclined plane when a force F is applied to the trolley. It is suggested that the relationship is $ma = F - (mg \sin \theta + k)$ where g is the acceleration of free fall, m is the mass of the trolley and k is a constant. Design a laboratory experiment to test the relationship between a and θ . Explain how your results could be used to determine a value for k. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to the procedure to be followed, the measurements to be taken, An attempt to rearrange the equation the control of variables, is made here, but it is the analysis of the data. not in the equation of a any safety precautions to be taken. straight line. [15] Candidates should be encouraged to put the a = F - gsin 0 + K given relationship into y = mx + c format.

How the candidate could have improved their answer

More detail could have been given in the methods of data collection. A little more care taken with the diagram would also have helped. The mass of the trolley also needed to be measured.

Paper 5 - Planning, Analysis and Evaluation

The candidate sensibly suggested the use of light gates and a data logger, but should have included much more detail about how the light gates were to be used, what lengths would need to be measured, and how these measurements could be used to determine the acceleration.


The candidate could have improved their answer by analysing the data more effectively. Careful rearrangement of the original relationship into the equation of a straight line, y = mx + c, would have earned an additional detail mark. This would also have scored the second and third analysis marks by enabling the candidate to realise that the relationship would be valid if the graph was a straight line with a *y*-intercept, allowing *k* to be determined correctly.

There were a number of further additional detail marks that could have been awarded, especially for details about repeating results and how the force should be kept constant. The candidate could also have identified other variables, such as the mass of the trolley, that needed to be kept constant as well.

Mark awarded for defining the Problem (P) = 2 out of 2 Mark awarded for Methods of data collection (M) = 2 out of 4 Mark awarded for method of Analysis (A) = 1 out of 3 Mark awarded for additional Detail (D) = 1 out of 6

Total marks awarded = 6 out of 15

Example candidate response - low **Examiner comments** A student is investigating the acceleration of a trolley moving up an inclined plane as shown in Fig. 1.1. inclined plane bench Fig. 1.1 The student is investigating the relationship between the acceleration a of the trolley and the angle θ of the inclined plane when a force F is applied to the trolley. . -0.24. S.a = 10- (5(10) Sin 30 + 1) It is suggested that the relationship is $ma = F - (mg \sin \theta + k)$ where g is the acceleration of free fall, m is the mass of the trolley and k is a constant. Design a laboratory experiment to test the relationship between \underline{a} and $\underline{\theta}$. Explain how your results could be used to determine a value for k. You should draw a diagram, on page 3, showing the arrangement of your equipment. In your account you should pay particular attention to the procedure to be followed, the measurements to be taken, This is a good page for the control of variables. drafting a possible the analysis of the data, response to the any safety precautions to be taken. question. [15] m (v-1) = F-mgsin +14

Total marks awarded =

5 out of 15

How the candidate could have improved their answer

The candidate should have drawn a diagram to show how the experiment could work in a laboratory, then described the method to determine the acceleration in greater detail, including how measurements would be made and used. The candidate should have described an appropriate graph showing the relationship of a against θ and explained how k could be determined. There were a number of further additional detail marks that could have been awarded, e.g. details about measurements and experimental techniques experienced during their laboratory course.

Mark awarded for defining the Problem (P) = 2 out of 2 Mark awarded for Methods of data collection (M) = 2 out of 4 Mark awarded for method of Analysis (A) = 0 out of 3 Mark awarded for additional Detail (D) = 1 out of 6

Total marks awarded = 5 out of 15

Common mistakes candidates made in this question

When defining the problem, candidates often discussed 'controlling' variables rather than stating the variables that need to be kept constant for a fair test. Some candidates did not read the question carefully and designed experiments with the trolley rolling *down* the plane. Others did not show how the inclined plane could be supported or varied.

In general, candidates did not always describe the methods of data collection, in particular the acceleration, in sufficient detail. They also did not mention the relevant measurements and how these measurements would be used. Where candidates suggest data logging procedures, clear explanations were required about the measurements needed. For example, if a piece of card was being used to interrupt a light beam, then the length of the card needed to be measured with a ruler.

When using trigonometry to determine the angle, a clear indication was needed for the lengths to be used as well as a correct relationship.

Many candidates did not describe a graph of a against θ and, as a consequence, did not gain any further marks in this section. The next mark was awarded for realising that the relationship would be valid if a straight line that did not pass through the origin, in an appropriate graph, was observed. However, many candidates assumed that the straight line *would* pass through the origin. The third mark was for explaining how k could be determined. To earn the mark, this required k to be the subject of the equation that included the y-intercept. Many candidates did not work out the y-intercept correctly, with many incorrectly positioned negative signs. One additional detail mark was awarded for the correct rearrangement of the relationship for the graph plotted; this needed to be in the y = mx + c format.

In the additional detail section, vague responses were not awarded marks. The purpose of this section was for candidates to broaden their answers by including appropriate detail based on their practical experience. They were not awarded marks for the statement 'the experiment is repeated and an average is taken'. More detail was required, for example 'for the same angle, the experiment is repeated and a is determined again and the average value of a is then determined'.

A mark was available for an appropriate safety precaution linked to the trolley falling. Candidates' answers should have given safety detail relevant to the experiment in question rather than general 'textbook' rules for working in a laboratory.

Question 2

Example candidate response - high **Examiner comments** A student is investigating how the resistance of a wire depends on the diameter of the wire. The circuit is set up as shown in Fig. 2.1. ohmmeter Fig. 2.1 The resistance R of the wire is measured using an ohmmeter. The experiment is repeated for wires of the same material and same length L but different diameter d. It is suggested that R and d are related by the equation $R = \frac{4\rho L}{\pi d^2}$ where ρ is a constant. (a) A graph is plotted of R on the y-axis against $\frac{1}{d^2}$ on the x-axis. Determine an expression for the gradient. The candidate has put the given equation into a y = mx + c format. It is useful to encourage candidates to do this

for this part.

Mark for (a) = 1/1

Example candidate response - high, continued

Examiner comments

The candidate has labelled the column

The second mark is not awarded because the last value of $1/d^2$ is given to four significant figures. Since the raw data has been given to two significant figures, then $1/d^2$ should be given to two (or three)

correctly.

(b) Values of d and R are given in Fig. 2.2.

d/10 ^{−3} m	R/Ω	-12/10°m-2
0.91 ± 0.01	1.6	1.21 + 0.03
0.56 ± 0.01	4.4	3,19 ± 0.1
0.46 ± 0.01	6.6	4.73 ± 0.2
0.38 ± 0.01	9.7	6.93±0.4
0.32 ± 0.01	13.9	9.71 ± 0.6
0.27 ± 0.01	19.5	12.121

Fig. 2.2

2

Calculate and record values of $\frac{1}{d^2}/10^6$ m⁻² in Fig. 2.2.

Include the absolute uncertainties in $\frac{1}{d^2}$.

Mark for (b) = 2/3[3]

[2]

- (c) (i) Plot a graph of R/Ω against $\frac{1}{d^2}/10^6$ m⁻² Include error bars for $\frac{1}{d^2}$.
 - (ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Both lines should be clearly labelled.
 - (iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer.

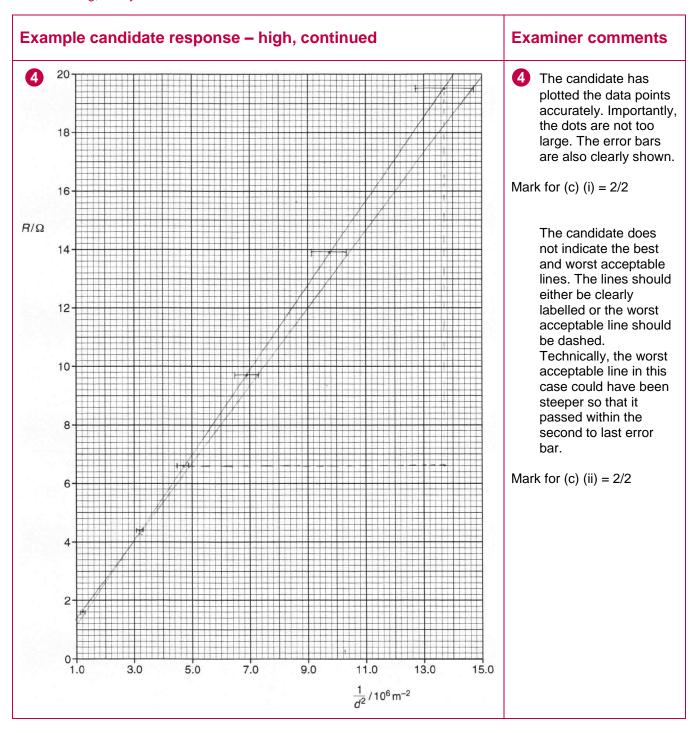
Line of best fit

$$(4.73,6.6)$$
 $(13.72,19.5)$
 $(4.73,6.6)$ (4.73)
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.6)$
 $(4.5 - 6.$

worst acceptable straight line (1.18, 1.6) (14.72, 19.5) 19.5 - 1.6 = 1.32 x 10-6

absolute uncertainty= (1-43-1-32)10-6 = 0.11 x10-6

(1.43±0-1) 10-6


The candidate indicates the triangles used on the graph. The hypotenuse is more than half the length of the line.

significant figures.

The calculation shown above allows for the 10⁶ on the x-axis. This will assist in part (d). A common mistake is for candidates not to allow for powers of ten on the axes.

The determination of the absolute uncertainty is clearly demonstrated.

Mark for (c) (iii) = 2/2

Example candidate response - high, continued

(d) (i) Using your answers to (a) and (c)(iii), determine the value of ρ . Include an appropriate unit

Data: $L = 1.00 \pm 0.01 \,\text{m}$.

$$m = \frac{4\rho L}{\pi}$$

$$1.43 \times 10^{-6} - \frac{4\rho \times 1}{\Lambda}$$

$$p = (1.43 \times 10^{-6}) \pi$$

(ii) Determine the percentage uncertainty in ρ .

$$\frac{\Delta p}{\rho} = \frac{\Delta m}{m} + \frac{\Delta L}{L}$$

$$\frac{\Delta p}{\rho} = \frac{0.1 \times 10^{-6}}{1.43 \times 10^{-6}} + \frac{0.01}{1}$$

$$\frac{\Delta p}{\rho} = 0.09$$

Determine the resistance \emph{R} of the wire. Include the absolute uncertainty in your answer.

$$R = \frac{4pL}{Ro^{2}}$$

$$R = \frac{4 \times (1.13 \times 10^{-6}) \times 1}{R \times 0.23^{2}} = 3.71 \times 10^{-7}$$

$$R = \frac{Ap}{P} + \frac{AL}{L} + 2 \frac{Ad}{d}$$

$$= 0.09 + \frac{0.01}{1} + 2 \frac{(0.01)}{(0.23)} R = \frac{(2.71 \pm 0.5) \times 10^{-5}}{1} \times 10^{-5}$$
[Total: 15]

Examiner comments

The candidate uses the answer from part (a). The method to gain the answer is clearly demonstrated. The answer is correctly evaluated and an appropriate unit given.

Mark for (d) (i) = 2/2

6 The candidate clearly demonstrates the determination of the percentage uncertainty using a fractional method.

Mark for (d) (ii) = 1/1

Unfortunately, the candidate does not allow for d being given as 0.23 mm and so is not awarded the first mark due to a power of ten error. The candidate gives the answer to an appropriate number of significant figures. The candidate determines the fractional uncertainty. It would have been helpful to see the working 0.2 × 2.71. The final mark is given because the error is carried forward.

Mark for (e) = 1/2

Total marks awarded = 13 out of 15

Paper 5 – Planning, Analysis and Evaluation

How the candidate could have improved their answer

This candidate clearly demonstrated the methods used to determine the answers. The graph was carefully constructed, although the candidate should have labelled the line of best fit and the worst acceptable line.

Two marks were not awarded: one for giving too many significant figures in the data table in part (b) and the other for not changing millimetres to metres in part (e).

Mark awarded = (a) 1/1
Mark awarded = (b) 2/3
Mark awarded = (c) (i) 2/2, (ii) 2/2, (iii) 2/2
Mark awarded = (d) (i) 2/2, (ii) 1/1
Mark awarded = (e) 1/2

Total marks awarded = 13 out of 15

Example candidate response – middle

Examiner comments

2 A student is investigating how the resistance of a wire depends on the diameter of the wire.

The circuit is set up as shown in Fig. 2.1.

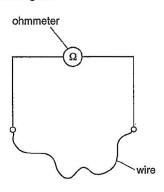


Fig. 2.1

The resistance \boldsymbol{R} of the wire is measured using an ohmmeter.

The experiment is repeated for wires of the same material and same length L but different diameter d.

It is suggested that (R) and (d) are related by the equation

$$R = \frac{4\rho L}{\pi d^2}$$

where ρ is a constant.

(a) A graph is plotted of \widehat{R} on the *y*-axis against $\frac{1}{d^2}$ on the *x*-axis. Determine an expression for the gradient.

$$R = \frac{4pL}{\pi d^2}$$

$$R = \left(\frac{4pL}{\pi}\right) \frac{1}{12}$$

1 The candidate has clearly put the equation into a straight line format.

Mark for (a) = 1/1

Example candidate response – middle, continued

(b) Values of d and R are given in Fig. 2.2.

<i>d/</i> 10 ^{–3} m	R/Ω	1/2 /106 m-2	
0.91 ± 0.01	1.6	7-21 ± 0-03	1.20± 0.03
0.56 ± 0.01	4.4	5-19 1 O-F1	3-20± 0-10
0.46 ± 0.01	6.6	4 .73 ± 0.70	4.70±0.20
0.38 ± 0.01	9.7	6-93 = 0.35	6.90±0.40
0.32 ± 0.01	13.9	9-77 3 0-58	9-80±0.60
0.27 ± 0.01	19.5	13-70 1 0-96	13-70±1.00

Fig. 2.2

Calculate and record values of $\frac{1}{d^2}/10^6 \text{m}^{-2}$ in Fig. 2.2.

Include the absolute uncertainties in $\frac{1}{d^2}$.

[3]

- (c) (i) Plot a graph of R/Ω against $\frac{1}{d^2}/10^6$ m⁻²
 Include error bars for $\frac{1}{d^2}$.
 - (ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Both lines should be clearly labelled. [2]
 - (iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer.

Gradient of the worst fit is

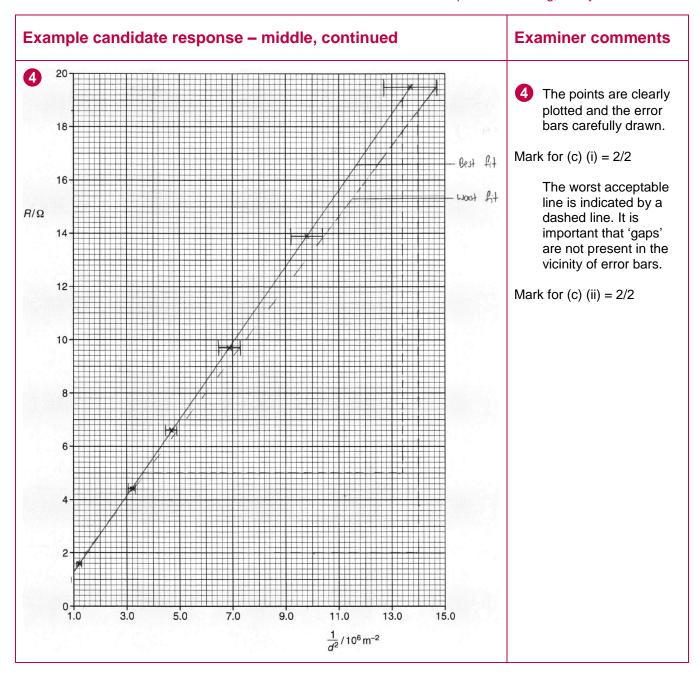
Gradient of best fit =
$$\frac{19-5}{(3.4-3.6)} \times 10^6$$

= $\frac{14}{9.8 \times 10^6}$
= $1.43 \times 10^{-6} \Omega \text{ m}^2$

$$= \frac{18.6-2}{(14-1.4)\times10^6}$$

$$= \frac{16.6}{12.6\times10^7}$$

gradient =
$$(1.43 \pm 0.11) \times 10^{-6} \Omega m^{-2}$$
 [2]


Examiner comments

The candidate has labelled the column correctly. The second mark is not awarded because the last row has too many significant figures. Furthermore, the candidate does not appear to have understood the calculation of values since they have determined the first five rows correctly to two significant figures and then incorrectly added a zero. The uncertainties have been determined correctly.

Mark for (b) = 2/3

The candidate clearly demonstrates the methods to determine both the gradient and the absolute uncertainty in the gradient. They have correctly allowed for the power of ten on the x-axis. It is useful that the candidate has included a unit as this will help in the next part.

Mark for (c) (iii) = 2/2

Example candidate response - middle, continued

(d) (i) Using your answers to (a) and (c)(iii), determine the value of ρ . Include an appropriate unit.

Data: $L = 1.00 \pm 0.01 \,\text{m}$.

Gradient = typh

$$P = \frac{(.43 \times 10^{-6})(.11)}{4}$$
$$= 1.12 \times 10^{-6}$$

$$\frac{4pL}{JT} = 1.43 \times 10^{-6}$$

$$\frac{y(\phi(1))}{37} = 1.43 \times 10^{-6}$$

 $\rho = \frac{1.12 \times 10^{-6}}{1.12 \times 10^{-6}}$

(ii) Determine the percentage uncertainty in ρ .

6 $\frac{\partial P}{P} = \frac{\partial G}{G} + \frac{\partial L}{L} = \frac{\partial P}{P} \times 100$ $= \frac{0.11 \times 10^{-6}}{1.43 \times 10^{-6}} + \frac{0.01}{1.00} = 8.7\%$ $= \frac{0.2769^{-3}}{0.087}$

percentage uncertainty in $\rho = \frac{8.7}{}$

(e) The experiment is repeated with a thinner wire of diameter 0.23 ± 0.01 mm. The wire is of the same material and length.

Determine the resistance \underline{R} of the wire. Include the absolute uncertainty in your answer.

7

$$\varrho = \left(\frac{4 \text{ pl}}{J^{1}}\right) \frac{1}{J^{2}}$$

$$\varrho = \left(G_{3}\right) \frac{1}{J^{2}}$$

$$= \left(1.43 \times 10^{-6}\right) \left(\frac{1}{(6.23 \times 10^{-3})^{2}}\right)$$

8

= 27.03

$$R = \frac{27.03 \pm 2.08}{\Omega} \Omega [2]$$

[Total: 15]

 $R = (G_w) \frac{1}{d^2}$

Examiner comments

The determination of resistivity using the gradient is clearly demonstrated.
Unfortunately, the unit has been omitted.

Mark for (d) (i) = 1/2

The candidate clearly demonstrates the determination of percentage uncertainty. It is helpful to see the substitution of values.

Mark for (d) (ii) = 1/1

- The candidate recognises that R may be calculated using the gradient. However, a mark is not awarded because the value of d is given to two significant figures and so the answer should be given to two (or three) significant figures.
- The candidate incorrectly attempts a worst value calculation here. Since the smaller gradient has been used, the candidate should have used 0.24 mm for the value of d. This answer very clearly demonstrates the need for candidates to show their working.

Mark for (e) = 0/2

Total marks awarded = 11 out of 15

How the candidate could have improved their answer

- **(b)** The candidate needed to understand significant figures in calculated quantities for this question. The calculated quantity should be given to the same number of significant figures (or one more significant figure) as the least accurate raw data. In this case, the raw data in the last row was given to two significant figures so the calculated data should have been given to two (or three) significant figures. Furthermore, the candidate did not appear to have understood the calculation of values, since they determined the first five rows correctly to two significant figures and then incorrectly added a zero; these values were then incorrectly calculated to three significant figures.
- (d) (i) Here the candidate clearly demonstrated their method and gained an answer with the correct power of ten. Unfortunately, the candidate omitted a unit.
- **(e)** Here the candidate gave the value of R to too many significant figures. Since the least accurate data is d, which is given to two significant figures, R should have been given to two or three significant figures. To determine the absolute uncertainty in R, the candidate used a maximum/minimum method. In this case, the candidate attempted to find the minimum R value but did not use the maximum value of d.

Mark awarded = (a) 1/1

Mark awarded = (b) 2/3

Mark awarded = (c) (i) 2/2, (ii) 2/2, (iii) 2/2

Mark awarded = (d) (i) 1/2, (ii) 1/1

Mark awarded = (e) 0/2

Total marks awarded = 11 out of 15

Example candidate response - low **Examiner comments** A student is investigating how the resistance of a wire depends on the diameter of the wire. The circuit is set up as shown in Fig. 2.1. ohmmeter Fig. 2.1 The resistance R of the wire is measured using an ohmmeter. The experiment is repeated for wires of the same material and same length L but different diameter d. It is suggested that R and d are related by the equation $R = \frac{4\rho L}{\pi d^2}$ where ρ is a constant. (a) A graph is plotted of R on the y-axis against $\frac{1}{d^2}$ on the x-axis. $R = \frac{4PC}{\pi d^2}$ $R = \frac{4PC}{\pi d^2}$ $R = \frac{4PC}{\pi}$ R =Determine an expression for the gradient. The candidate has attempted to put the given equation into y = mx + c format but has omitted the 'L'.

Mark for (a) = 0/1

Example candidate response - low, continued

(b) Values of d and R are given in Fig. 2.2.

<i>d</i> /10 ^{−3} m	R/Ω	1 d2/10	6 - 2
0.91 ± 0.01	1.6	1.21 ±	0.02
0.56 ± 0.01	4.4	3.18 =	0.11
0.46 ± 0.01	6.6	4.73 =	0·2 a
0.38 ± 0.01	9.7	6.93+	0.31%
0.32 ± 0.01	13.9	9.77±	0.61
0.27 ± 0.01	19.5	13.72#	1-02

Fia. 2.2

Calculate and record values of $\frac{1}{d^2}/10^6 \mathrm{m}^{-2}$ in Fig. 2.2.

Include the absolute uncertainties in $\frac{1}{d^2}$.

[3]

(c) (i) Plot a graph of R/Ω against $\frac{1}{d^2}/10^6 \text{m}^{-2}$.

Include error bars for $\frac{1}{d^2}$.

[2]

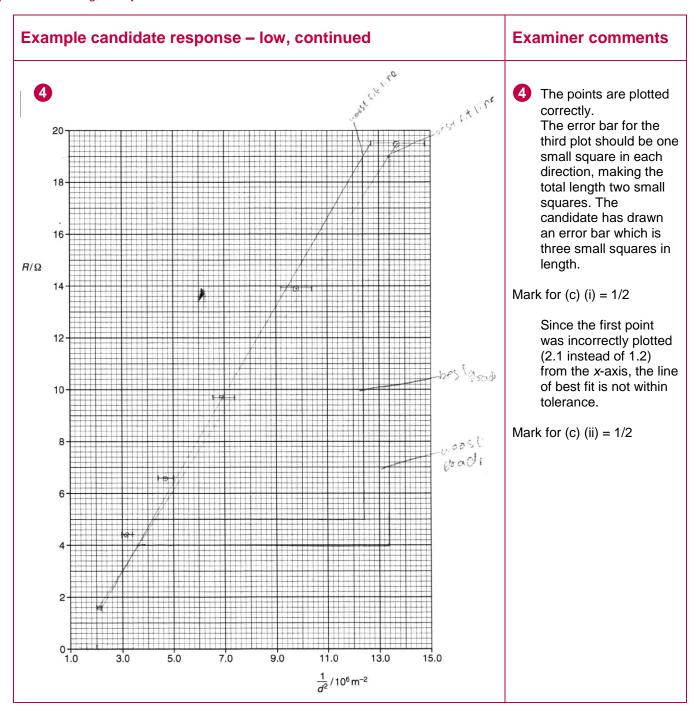
- (ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Both lines should be clearly labelled. [2]
- (iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer.

$$\frac{y^2 - y^1}{2z^2 - \chi_1} = \frac{19 - y}{(13 \cdot y - 3 \cdot 6) \chi_{16}^2 \cdot 9 \cdot y} \times 10^6 \qquad \frac{y^2 - y^1}{2^2 - 21} = \frac{19 - 5}{(12 \cdot y - y \cdot 2) \chi_{16}^2 \cdot 8 \cdot 2 \chi_{16}^2} = \frac{10}{10} \times 10^{-6}$$

$$= 1.60 - 1.7$$

$$= 1.4 \times 10^{-7}$$

Examiner comments


The candidate has omitted the m from the column heading and is therefore not awarded the first mark. Row two is also incorrect: it should be 2.19. The candidate also gives the last value in the table to four significant figures. Since the raw data is given to two significant figures, the calculated data should also be given to two (or three) significant figures.

Mark for (b) = 1/3

The candidate indicates clearly the points used to determine the gradient. They also correctly use the power of ten from the x-axis.

The determination of the uncertainty is clearly demonstrated.

Mark for (c) (iii) = 2/2

Example candidate response - low, continued

Using your answers to (a) and (c)(iii), determine the value of ρ . Include an appropriate

Data: $L = 1.00 \pm 0.01 \,\text{m}$.

5

 $o = 1.26 \times 10^{-6}$ [2]

P= 5.03×10-6

P = 1.25 × 10-6

(ii) Determine the percentage uncertainty in p.

percentage uncertainty in $\rho = \frac{1.99}{9}$ % [1]

(e) The experiment is repeated with a thinner wire of diameter 0.23 \pm 0.01 mm. The wire is of the same material and length.

Determine the resistance R of the wire. Include the absolute uncertainty in your answer.

$$\frac{4(126\times10^{6})(100)}{700^{23}} = \frac{697\times10^{6}}{697\times10^{6}} = \frac{2\times0.01}{100}$$

$$R = \frac{(6.97 \pm 0.1) \times 10^{-6}}{\text{[Total: 15]}}$$

Examiner comments

The candidate earns a benefit of the doubt mark, having omitted L from the relationship reading the gradient to the resistivity. Since L has a value of 1, the correct method has, in effect, been used. The candidate is not awarded the second mark since the unit has been omitted.

Mark for (d) (i) = 1/2

6 No clear method is shown here. Using the candidate's answer to (c) (iii) and a fractional method, the answer should have been about 7%.

Mark for (d) (ii) = 0/1

The candidate does not change the millimetres to metres for the calculation. The determination of the absolute uncertainty is again incorrect.

Mark for (e) = 0/2

Total marks awarded = 6 out of 15

Paper 5 – Planning, Analysis and Evaluation

How the candidate could have improved their answer

The candidate needed to take more care with the calculation of quantities in the table in (b).

When plotting graphs that should produce a linear trend, it is useful to recheck the plotting of points that do not lie on the trend line. This candidate plotted 2.1 instead of 1.2 from the *x*-axis. As a consequence, the line of best-fit was not within tolerance.

The candidate also appeared to have been confused about the determination of uncertainties. They needed to understand the difference between absolute and percentage uncertainties as well as the methods of combining uncertainties either by fractional methods or maximum/minimum methods.

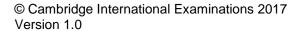
Mark awarded = (a) 0/1 Mark awarded = (b) 1/3 Mark awarded = (c) (i) 1/2, (ii) 1/2, (iii) 2/2 Mark awarded = (d) (i) 1/2, (ii) 0/1 Mark awarded = (e) 0/2

Total marks awarded = 6 out of 15

Common mistakes candidates made in this question

To gain the highest marks, the presentation of mathematical working requires a clear statement of the equation used, substitution of numbers, leading to the correct answer. Furthermore, the working has to be logical and readable.

(b) The common mistake in the $1/d^2$ column was stating the last value to four significant figures. Since the raw data was given to two significant figures, it was expected that $1/d^2$ would be given to two or three significant figures. The majority of candidates calculated the absolute uncertainty correctly; a common error was not doubling the percentage uncertainty for d^2 .


The two main reasons for not being awarded marks in **(c)** (i) were vertical error bars and drawing large blobs for the plotted points. In **(c)** (ii) some candidates were careless in drawing the worst acceptable line. Some candidates were not awarded the mark for the worst acceptable line because they used a dashed line and allowed a gap in the dash at the error bar.

(c) (iii) required candidates to determine the gradient of the line of best-fit. When selecting points for the gradient they must lie on the line of best fit. Candidates were not awarded this mark either for misreading their graphs or for quoting values from the table. Some candidates did not use a large enough triangle. A significant number of candidates made a power of ten error, having not used the data from the axes correctly; this was not penalised in this part but in (d) (i).

When determining the resistivity ρ in (d) (i) it is vital that the working for the answer is clearly shown. The equation should be quoted followed by correct substitution of numerical values, one of which must be the value of the gradient calculated in (c) (iii). Many candidates were not awarded the unit mark and several candidates did not give any unit. A number of candidates were not awarded the second mark due to a power of ten error from determining the gradient.

- (d) (ii) There was wide recognition that the percentage uncertainty of ρ was the sum of the two percentage uncertainties of the two necessary components in the equation, where clear indication of the data used needed to be shown. Those candidates attempting to use a 'maximum/minimum' method were invariably not awarded this mark due to not showing clearly where the data used had originated from or to using incorrect combinations of maximum and minimum values. Some candidates incorrectly subtracted percentage uncertainties.
- **(e)** Here the calculated value of *R* needed to be quoted to two or three significant figures and to be given in a specific range. Again, clear logical working was required. A number of candidates did not allow for *d* being measured in millimetres. To gain the mark for the absolute uncertainty in *R*, candidates who could not demonstrate their understanding by showing the method used were not awarded this mark. It was expected that appropriate equations would be used with substitution of data.

Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom t: +44 1223 553554 f: +44 1223 553558 e: info@cie.org.uk www.cie.org.uk

