

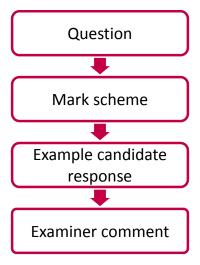
Example Candidate Responses

Cambridge International AS and A Level Mathematics

9709

Paper 6

Contents


Introduction	2
Assessment at a glance	3
Paper 6	5

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS & A Level Mathematics (9709), and to show how different levels of candidates' performance relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For ease of reference the following format for each component has been adopted:

Each question is followed by an extract of the mark scheme used by examiners. This, in turn, is followed by examples of marked candidate responses, each with an examiner comment on performance. Comments are given to indicate where and why marks were awarded, and how additional marks could have been obtained. In this way, it is possible to understand what candidates have done to gain their marks and what they still have to do to improve them.

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at https://teachers.cie.org.uk

Assessment at a glance

The 7 units in the scheme cover the following subject areas:

- Pure Mathematics (units P1, P2 and P3);
- Mechanics (units M1 and M2);
- Probability and Statistics (units S1 and S2).

Centres and candidates may:

- take all four Advanced (A) Level components in the same examination session for the full A Level.
- follow a staged assessment route to the A Level by taking two Advanced Subsidiary (AS) papers (P1 & M1 or P1 & S1) in an earlier examination session;
- take the Advanced Subsidiary (AS) qualification only.

AS Level candidates take:

Paper 1: Pure Mathematics 1 (P1)

1¾ hours

About 10 shorter and longer questions 75 marks weighted at 60% of total

plus one of the following papers:

Paper 2: Pure Mathematics 2 (P2)	Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics (S1)
1¼ hours About 7 shorter and longer questions 50 marks weighted at 40% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 40% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 40% of total

A Level candidates take:

Paper 1: Pure Mathematics 1 (P1)	Paper 3 Pure Mathematics 3 (P3)
1¾ hours About 10 shorter and longer questions 75 marks weighted at 30% of total	1% hours About 10 shorter and longer questions 75 marks weighted at 30% of total

plus **one** of the following combinations of two papers:

Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics 1 (S1)
1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total

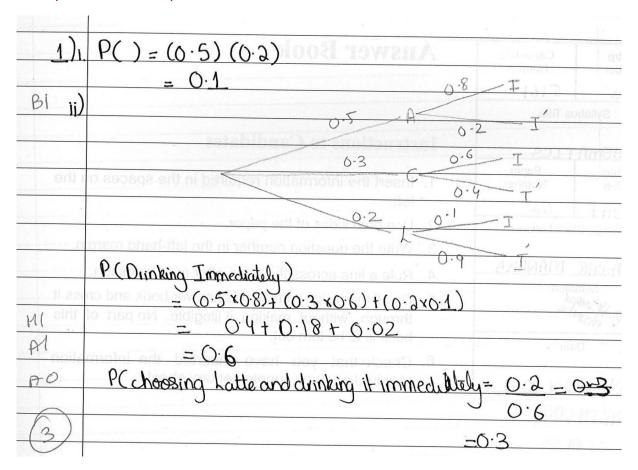
or

Paper 4: Mechanics 1 (M1)	Paper 5: Mechanics 2 (M2)
1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total

or

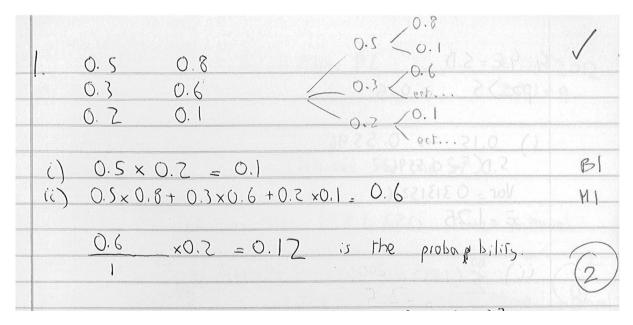
Paper 6: Probability and Statistics 1 (S1)	Paper 7: Probability and Statistics 2 (S2)
1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total

Teachers are reminded that the latest syllabus is available on our public website at **www.cie.org.uk** and Teacher Support at **https://teachers.cie.org.uk**


Paper 6

Question 1

- Fabio drinks coffee each morning. He chooses Americano, Cappucino or Latte with probabilities 0.5, 0.3 and 0.2 respectively. If he chooses Americano he either drinks it immediately with probability 0.8, or leaves it to drink later. If he chooses Cappucino he either drinks it immediately with probability 0.6, or leaves it to drink later. If he chooses Latte he either drinks it immediately with probability 0.1, or leaves it to drink later.
 - (i) Find the probability that Fabio chooses Americano and leaves it to drink later. [1]
 - (ii) Fabio drinks his coffee immediately. Find the probability that he chose Latte. [4]


1	(i)	$P(A \text{ Later}) = 0.5 \times 0.2 = 0.1$	B1	[1]	
	(ii)	$P(L \text{ given } I) = (0.2 \times 0.1)/(0.5 \times 0.8 + 0.3 \times 0.6 + 0.2 \times 0.1)$	В1		0.2×0.1 seen on its own as num or denom of a fraction
			M1		Attempt at P(<i>I</i>) summing 2 or 3 2-factor prods, seen anywhere
		=0.02/0.6	A1		Correct unsimplified P(I) as num or denom of a fraction
		= 0.0333 (1/30)	A 1	[4]	Correct answer accept 0.033

Paper 6

Item marks awarded: (i) = 1/1; (ii) = 2/4

Total mark awarded = 3 out of 5

Item marks awarded: (i) = 1/1; (ii) = 1/4

Total mark awarded = 2 out of 5

Examiner comment - 1 and 2

- (i) This was a routine first part of the first question and both candidates answered it correctly.
- (ii) Both candidates recognised that the probability P (drinking immediately) was required and both found this probability correctly. Candidate 1 recognised that this was part of a conditional probability question and used this value as the denominator of the associated conditional probability fraction. However, the numerator was not correct. Candidate 2 was unable to proceed further after having found P (drinking immediately).

Question 2

- 2 The random variable *X* is the daily profit, in thousands of dollars, made by a company. *X* is normally distributed with mean 6.4 and standard deviation 5.2.
 - (i) Find the probability that, on a randomly chosen day, the company makes a profit between \$10 000 and \$12 000.
 - (ii) Find the probability that the company makes a loss on exactly 1 of the next 4 consecutive days.

2	(i)	$z_1 = \frac{12 - 6.4}{5.2} = 1.077$		M1		Standardising, can be all in thousands, no mix, no cc no sq rt no sq
		$z_2 = \frac{10 - 6.4}{5.2} = 0.692$		M1		$\Phi_2 - \Phi_1$, Φ_2 must be $> \Phi_1$
		$\Phi(z_1) - \Phi(z_2) = 0.8593$ $= 0.104$	- 0.7556	A 1	[3]	Correct answer
	(ii)	P(loss) = P($z < \frac{0-6.4}{5.2}$) = 1 - 0.8909	= P(z < -1.231)	M1		Standardising using $x = 0$, accept $\frac{0.5 - 6.4}{5.2}$
		$= 0.109$ $P(1) = (0.1091)^{1}(0.89)$	$(909)^3 \times 4C1$	A1 M1		Correct prob Binomial term ${}_{4}C_{x}p^{x}(1-p)^{4-x}$ any $p \ x \neq 0$
		= 0.309 or 0.30	8	A1	[4]	Correct answer

2 i $X \sim N(6.4, 5.2^2)$ P(10,000 (X < 12000) P(10,000-6.4 < 7 < 12000-6.4) 5.2 5.2 P(10-6.4 < 2 < 12-6.4) 5.2 5.2 = 8(1.077) - 8(0.6923) 0.8577 0.7549 = 0.8593 - 0.7556 = 0.1037 2ii loss = 1-0.1037 = 0.8963	
$P(10,000 < X < 12000)$ $P(10,000 - 6.4 < 7 < 12000 - 6.4)$ $= \emptyset (1$ $P(10 - 6.4 < 2 < 12 - 6.4)$ $= \emptyset (1.077) - \emptyset (0.6923)$ $= 0.8593 - 0.7556$ $= 0.1037$	C1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$P(10,000-6.4 < 7 < 12.000-6.4)$ $= \emptyset(1$ $P(10-6.4 < 2 < 12-6.4)$ $= \emptyset(1.077) - \emptyset(0.6923)$ $= 0.8593 - 0.7556$ $= 0.1037$	2.2.1.2.1.00
$= \begin{cases} \frac{1}{9} \left(\frac{10 - 6.4}{5.2} \right) \\ \frac{10 - 6.4}{5.2} \left(\frac{12 - 6.4}{5.2} \right) \\ \frac{1}{5.2} \\ \frac{1}{5.2}$. 1
$= \begin{cases} \frac{1}{9} \left(\frac{10 - 6.4}{5.2} \right) \\ \frac{10 - 6.4}{5.2} \left(\frac{12 - 6.4}{5.2} \right) \\ \frac{1}{5.2} \\ \frac{1}{5.2}$	
$P\left(\frac{10-6.44}{5.2} < \frac{2}{3.2} < \frac{12-6.44}{3.2}\right)$ $= 8\left(\frac{1.077}{0.8517} - 9\left(\frac{0.6923}{0.7549}\right)$ $= 0.8593 - 0.7556$ $= 0.1037$	
= 8 (1.077) - 8 (0.6923) $= 0.8593 - 0.7556$ $= 0.1037$	
= 0.8593 - 0.7556	
= 0,1037	40054
2ii loss = 1 - 0.1037 = 0,8963	3
P = 4 C, (0.8963) (0.1037)	M1
= 3.998 XID3 = 0.004	4

Item marks awarded: (i) = 3/3; (ii) = 1/4

Total mark awarded = 4 out of 7

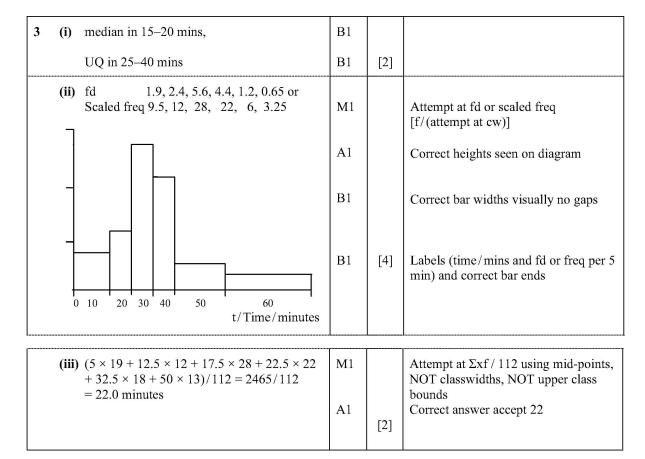
Paper 6

Q2	11) P (10 000 6)	X < 12000)	(17)
	College all another !	is the sent (15 < t 620)	
	2 = 10-6.4	2 = 12-6.4	119
	5.21 ss	21 2 of X of Sold was discussful	
	2 0.6923	2 1. 0 77	
	1000 750	,	
	P(x) 0.6923)	P (x < 1077)	
		P= 0.8593	
	P= 1-0.7556	Mills & least power & / in	
	P= 0.2444	both and all based	MI
	P (10000 < x	< 12000) TAPS -	
		0.2444	MO
		0.615 (3 sig) ANS.	
	Total and and a		
	(ii) 0.3851	> P	
	7	= 0 19 6 11 10 10 10 10 10 10 10 10 10 10 10 10	POY
		51 31) - h ent	
	DA 0.0	for any Arts.	
	4 C. (0.6149) (0	.3851) 0 / 7 / NA	MI
	~ 10 g	op (2 car)	
	2 0,358 ANS		
		the case of the case	(2)
		6	

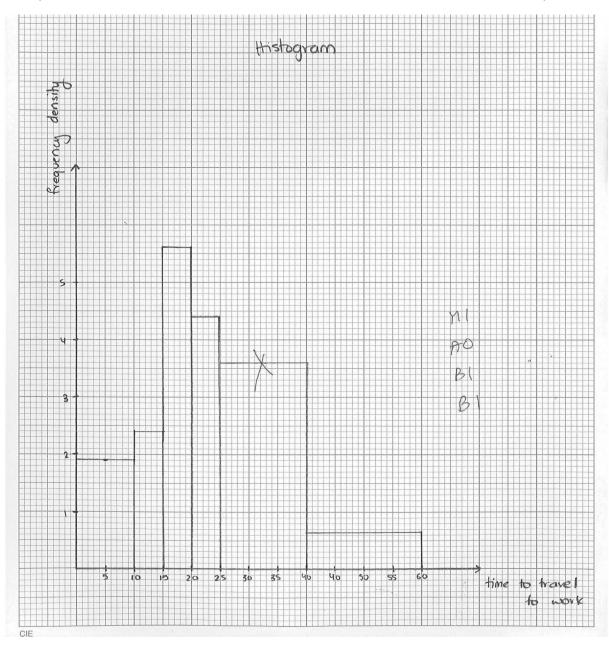
Item marks awarded: (i) = 1/3; (ii) = 1/4

Total mark awarded = 2 out of 7

Examiner comment - 1 and 2


- (i) The units, measured in thousands of dollars, posed problems to some candidates who did not realise that \$10,000 actually meant 10 when standardising. Candidate 1 mixed units originally, but realised that the value of z thus obtained was not sensible, so crossed the working out and used the correct values, gaining full marks for this part of the question. Candidate 2 managed to standardise correctly but was unable to find the correct area of the normal curve. Using a diagram would have helped to determine whether the required probability was sensible.
- (ii) Both candidates correctly recognised the binomial situation but were unable to find the probability of making a loss. They did not appreciate that making a loss is the same as making a profit of 0 or less. Both candidates thought they should use their previous answer in some way, which they did and thus gained a method mark for the binomial attempt.

Question 3


3 The table summarises the times that 112 people took to travel to work on a particular day.

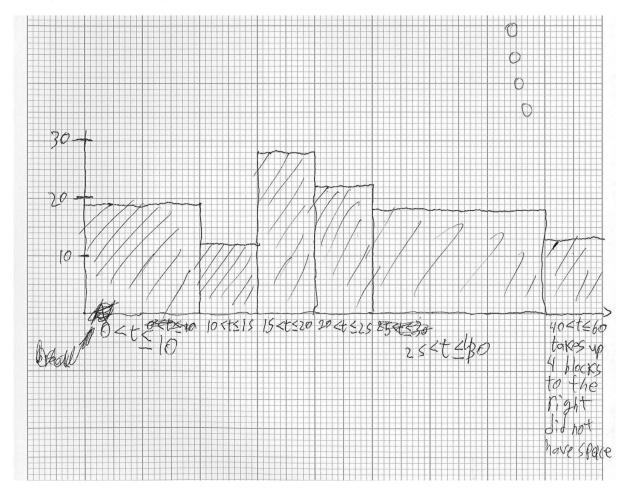
Time to travel to work (t minutes)	0 < <i>t</i> ≤ 10	$10 < t \le 15$	$15 < t \le 20$	20 < t ≤ 25	25 < t ≤ 40	40 < t ≤ 60
Frequency	19	12	28	22	18	13

- (i) State which time interval in the table contains the median and which time interval contains the upper quartile. [2]
- (ii) On graph paper, draw a histogram to represent the data. [4]
- (iii) Calculate an estimate of the mean time to travel to work. [2]

31	median → 15 <t<20< th=""><th>B</th></t<20<>	B
	upper quartile -> 204 (2014 < 25	2
	Opper quartie - 202 2025	7.0
3 11	frequency densities	
	<u>0</u> 19 12 , 28 22 18 13	
	lo', 5 , 28 , 22 , 18 , 13 lo', 5 , 15 , 20	
-		

Paper 6

Example candidate response – 1, continued


3 111	$\frac{7}{4}$ = 19(5) + 12(12.5) + 28(17.5) + 22(22.5) + 18(32.5) + 13(50)	
	P2.1 5 0 133	
	= 2465	
	- 22 0 = (PZA) D = 0 083 1	
	$\bar{X} = \mathcal{L}FX = 2465 = 22.01$	2
	*	+(6)

Item marks awarded: (i) = 1/2; (ii) = 3/4; (iii) = 2/2

Total mark awarded = 6 out of 8

3 total # 1 1 (15 < t s	Secretary = 112 20 Contains	the modian	= 56 1/2°.	.7528	4
2 (25 <t·< th=""><th>=40 contair</th><th>15 upper a</th><th>ruartile)</th><th></th><th></th></t·<>	=40 contair	15 upper a	ruartile)		
nj Examinat ans	W W Internation		J. j.	MUO	10 84
ii graph				u - 1	
jii 0.5 - 10.5	10.5-15.5 1	5.5-20.5 20.5	1-25.5 25.5-8	0.5 40.5	5-60.5
(0	5	5	2)		1
5.5	4208/3	19 2		5	<u> </u>
14	A 2	28 22		13	MI
104.5		22.6 minute		663	(3)

Example candidate response – 2, continued

Item marks awarded: (i) = 2/2; (ii) = 0/4; (iii) = 1/2

Total mark awarded = 3 out of 8

Examiner comment - 1 and 2

- (i) Candidate 1 showed no working for part (i) and made a mistake, whereas candidate 2 got this part completely correct.
- (ii) The graph was well done by candidate 1 who found the frequency densities correctly, labelled the axes correctly but plotted one of the heights on the graph at 3.6 instead of 1.2. Candidate 2 plotted frequencies instead of frequency densities, a very common mistake. Even so, the candidate could have gained a mark if the widths of the bars had all been correct visually. This candidate did not label the axes correctly, chose an inappropriate scale and was therefore unable to fit the entire graph on the page.
- (iii) Candidate 1 found the mean correctly choosing the correct mid-points of the intervals. Candidate 2 thought the intervals went from 0.5 to 10.5 and so on, instead of 0 to 10, but was otherwise mainly correct and so was awarded a method mark but no accuracy mark.

Question 4

- The mean of a certain normally distributed variable is four times the standard deviation. The probability that a randomly chosen value is greater than 5 is 0.15.
 - (i) Find the mean and standard deviation. [4]
 - (ii) 200 values of the variable are chosen at random. Find the probability that at least 160 of these values are less than 5.

4 (i)	$z = 1.036 \text{ or } 1.037$ $1.036 = \frac{5 - 4s}{s}$ $s = 0.993$ $\mu = 3.97$	B1 B1 M1 A1	[4]	± 1.036 or ± 1.037 seen $\frac{5-4\sigma}{\sigma}$ seen or $\frac{5-\mu}{\mu/4}$ oe One variable and sensible solving attempt z-value not nec Both answers correct
(ii)	$p = 0.85$ $\mu = 200 \times 0.85 = 170,$ $var = 200 \times 0.85 \times 0.15 = 25.5$ $P(\text{at least } 160) = P\left(z > \frac{159.5 - 170}{\sqrt{25.5}}\right)$ $= P(z > -2.079)$ $= 0.981$	B1 M1 M1 M1	[5]	200 × 0.85 (170) and 200 × 0.85 × 0.15 (25.5) seen Standardising, sq rt and must have used 200 continuity correction 159.5 or 160.5 correct area (> 0.5) must have used 200 correct value

Paper 6

Example candidate response – 1

Q Ψ·	N= 4(e) e= 5
	P(X>5) = 0.15
_i,	N = ? OP A PI OP A
	$P(x-\mu < S-\mu) = 0.15$ (using the notation of 2)
	P(Z<5-46) = 0.15.
	01
	8(2 57</td
	AS 2 > hence,
00	1-0(5-46)=0.15.
31	1-0.15 = 0 (5-4E). 0.85 = 0 (5-4E)
0	0 10 = 4 (36)
	1- (1-05-46)/=0.15
	1- (1- 05-46)/=0.15 1-1+ 0(5-6)/= 0/15
11	1-1+0(5-6)=0/15
11	halos i as a u -
	1./3006 1.36 = 5-46
	Line of the graph of the second
	1.36 6 = 6-46
	5.36 6 = S.
	s.36 - 0.933 (3 s.f)
	Now,
	N=4(c)
	N= 4 (0.933)
	N= 3.73 (3 S.f).

Example candidate response – 1, continued

ü)	n= 200 r= \$ 160	7
	1-0.15=0.85 N= 300(0.89)	
	P(X > 160) $y = 170$ $6 = 200(0.15)($	(28.0
	P(X-U > 160.9) (approximation) $C = 25.9$.	
	6 Carried Carried Common Carried Common Carried Carrie	-
	P(₹ ≥ 160.5-170)	BI
	25.5	
	$P\left(z > -19/S1\right)$	MD
	/sı,/	Light
1	1- (0-0.372S)	MI
	1- (1-00.3729)	
	t/1-/1 t 0 0·3725	MO
	00.3728	AO
	4 1-8-31 \ 1 1/8-41 \	(
	3 6 9 12	(4)

Item marks awarded: (i) = 2/4; (ii) = 2/5

Total mark awarded = 4 out of 9

Item marks awarded: (i) = 3/4; (ii) = 0/5

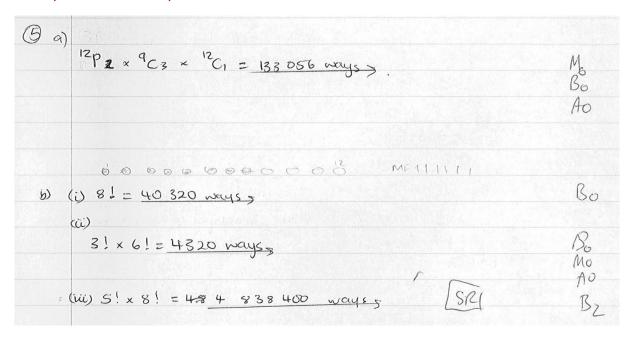
Total mark awarded = 3 out of 9

Examiner comment - 1 and 2

- (i) Candidate 1 used the normal tables backwards to find Φ^{-1} (0.85) but wrote 1.36 instead of 1.036. Candidate 2 obtained the correct *z*-value. Both candidates sorted out the information correctly regarding the mean being four times the standard deviation, and gained a method mark for attempting to solve their resulting equation. Candidate 2 would have gained full marks for part (i) if their answer had been written correct to three significant figures instead of only two.
- (ii) Candidate 1 recognised the normal approximation to the binomial and selected the correct probability, 0.85, of being less than 5. Candidate 1 did not use a square root when standardising, although did use a continuity correction but chose the wrong area of the normal curve, thus not being awarded two method marks. Candidate 2 did not recognise the normal approximation to the binomial and tried to use the binomial probabilities to find P(X = 160) but could not find P(X > 160). Thus no marks could be gained.

Question 5

- 5 (a) A team of 3 boys and 3 girls is to be chosen from a group of 12 boys and 9 girls to enter a competition. Tom and Henry are two of the boys in the group. Find the number of ways in which the team can be chosen if Tom and Henry are either both in the team or both not in the team. [3]
 - (b) The back row of a cinema has 12 seats, all of which are empty. A group of 8 people, including Mary and Frances, sit in this row. Find the number of different ways they can sit in these 12 seats if
 - (i) there are no restrictions, [1]
 - (ii) Mary and Frances do not sit in seats which are next to each other, [3]
 - (iii) all 8 people sit together with no empty seats between them. [3]


5(a)	Boys in:10C1 × 9C3 = 840 ways Boys out: 10C3 × 9C3 = 10080 ways Total = 10920 ways (10900)	M1 B1 A1	[3]	summing two 2-factor products, C or P Any correct option unsimplified Correct final answer
(b)(i)	$_{12}P_8 = 19,958,400$	B1	[1]	or 20,000,000
(ii)	together: $_{11}P_7 = 1663200 \times 2 = 3326400$ Not tog: $19958400 - 3326400$ = $16,632,000 (16,600,000)$	B1 M1	[3]	11P ₇ seen 19958400 or their (i) – their together (must be >0) correct final answer
	OR M at end then not F in $10 \times 10P6 \times 2=3024000$ ways not at end in $10 \times 9 \times 10P6 = 13608000$ ways Total = $16,632,000$ ways	M1 B1 A1		summing options for M at end and M not at end one correct option correct final answer
(iii)	8! × 5 = 201600 ways	B1 M1 A1	[3]	8! seen mult by equivalent of integer ≥ 1 Mult by 5 Correct answer SR 8! × 5!=4838400 B2

Paper 6

5g)	Number of ways = 12 C3 x (2 C2 x 12 C1 x 9 C3)
M	+ (10C 3 x 9(3)
81	- 1008 + 10080
4	- 11088.
816)	No restrictions = 12P8 = 1995 8400
ji	/ - [-] - [
BI ii	A 11 8 people sit together= 8Ps = 40320
0	midney and platen
(H).	100 p = 0.15 a, 0.85

Item marks awarded: (a) = 2/3; (b)(i) = 1/1; (ii) = 0/3; (iii) = 1/3

Total mark awarded = 4 out of 10

Item marks awarded: (a) = 0/3; (b)(i) = 0/1; (ii) = 0/3; (iii) = 2/3

Total mark awarded = 2 out of 10

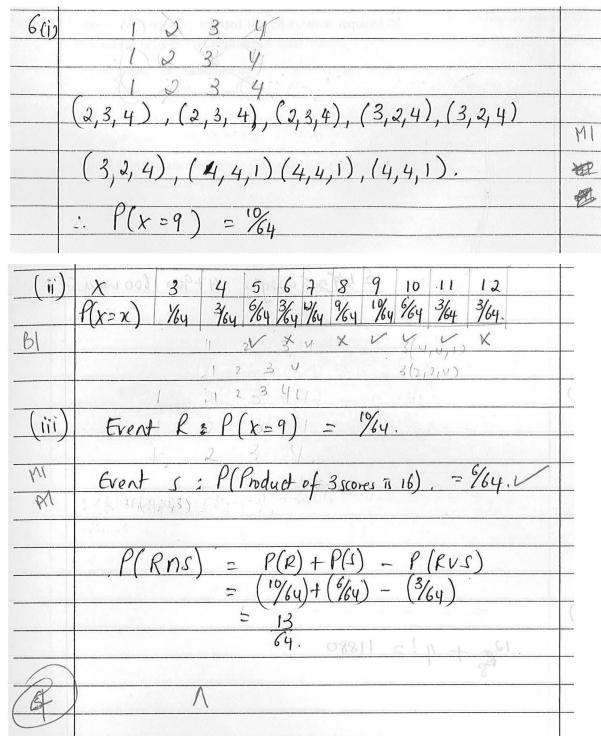
Examiner comment – 1 and 2

- (a) Candidate 1 appreciated that two options had to be added, namely boys in and boys out. One of the options was correct, and a method mark was awarded for adding the two options. Candidate 2 knew about permutations and combinations, but was unable to apply their knowledge correctly.
- (b) (i) This 1 mark question was answered correctly by candidate 1 but not by candidate 2.
 - (ii) Neither candidate could make any headway in this part of the question.
 - (iii) Both candidates appreciated that the 8 people could be arranged in 8! different ways. One forgot about the spaces and one thought the spaces could be arranged in 5! different ways.

Question 6

A fair tetrahedral die has four triangular faces, numbered 1, 2, 3 and 4. The score when this die is thrown is the number on the face that the die lands on. This die is thrown three times. The random variable *X* is the sum of the three scores.

(i) Show that
$$P(X = 9) = \frac{10}{64}$$
. [3]


(ii) Copy and complete the probability distribution table for X.

x	3	4	5	6	7	8	9	10	11	12
P(X=x)	$\frac{1}{64}$	$\frac{3}{64}$			12 64					

[3]

(iii) Event *R* is 'the sum of the three scores is 9'. Event *S* is 'the product of the three scores is 16'. Determine whether events *R* and *S* are independent, showing your working. [5]

6	(i) $P(9) = P(1,4,4) \times 3 + P(2,3,4) \times 6 + P(3,3,3)$ = 10/64 (5/32) (0.156) AG	M1 M1 A1	[3]	Listing at least 2 different options Multiplying P(4,3,2) by 6 or P(1,4,4) by 3 Correct answer must see numerical justification
	(ii) probs 1/64, 3/64, 6/64, 10/64, 12/64, 12/64, 10/64, 6/64, 3/64, 1/64.	B1 B1 B1	[3]	3 or more additional correct probs 5 or more correct All correct
	(iii) $P(S) = 6/64(3/32)$ $P(R \cap S) = 3/64, \neq 15/1024 \text{ ie } P(R) \times P(S)$ $OR P(R S) = \frac{3/64}{6/64} = 1/2, \neq 10/64 \text{ ie } P(R)$	M1 A1 B1 M1		An attempt at $P(S)$ 4,4,1 or 4,2,2 Correct $P(S)$ Correct $P(R \cap S)$ in either intersection or cond prob cases comparing their $P(R \cap S)$ with their $P(R) \times P(S)$ or their $P(R S)$ with their $P(R)$ need
Not	t independent	A1ft	[5]	numerical vals correct conclusion ft wrong $P(S)$ or $P(R \cap S)$ only

Item marks awarded: (i) = 1/3; (ii) = 1/3; (iii) = 2/5;

Total mark awarded = 4 out of 11

	Total no of outcomes 1 2 3 4
Question	= (4)3 = 64 1 2 3 4
No.	Possible Duteomer: - scor = 9
(6) in	2P(x1=9) = 10
1/4	(2 3.4)V
-	-2 (4,4,12) (3.2 H)
MI	3 (1441) - 2/2021 1011 (432) (432)
WI	1. 14 18 18 -5 19 6 10 10 10 P (x) = 3 3. (12 4 3)
	gophers 9
	5 0 4 6
	p (x 4 m 4) = 6 + 1 m 2 q o 8 2 3 8 8 = 6 -
	1 - a laves 2 - a 6 991 (et p 3 (ut) to
£(i)	N 3 4 5 6 7 8 9 ° 10 11 12
	1 31 (3) (3) (3) 12/ (6)0, (9)
	[사람이라고 방문에 가는 사람이 있는 사람이 되는 것 같아 나를 보고 있다. 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
	P(x=5) => .((1,2;2) ((2,11,2) (2,02,1))
	P(x=6) = (2,2,2) (1,3,2) - (4,2,3) (3,2,1)
3	(4,1,1) / (1,by,4) (1,4,0)
	P(x=8) = (2,4,2) (2,2,4) (4,2,2)
	(4),3,1) (1, 3,4) (1,4,3)
	P(x=10) =) x(4,4,2) (1) (1)
	12. ALL 10. 12. 3, 48.00, 20. 12.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$P(y \cap P \rightarrow (y \cap P \rightarrow (y \cap P)) = (y \cap P) = (y \cap P)$
	5) (1 - 1) (1) (1 - 2) (10) (1 - 2) (10) (10) (10) (10) (10) (10) (10) (10
	1071 106 1 106 + 100F 2 40 1752 .
	1995
tun	P(R) = 9 P(s) = 16 5 a normal dubblemen
	P(R n s) = P(R) * P(s)
	= 9 X16
9	= 144 X

Item marks awarded: (i) = 2/3; (ii) = 0/3; (iii) = 0/5;

Total mark awarded = 2 out of 11

Examiner comment – 1 and 2

- (i) Both candidates tried to find 10 options. Candidate 1 found (2, 3, 4) and (4, 4, 1) but did not realise that (2, 3, 4) was different from (3, 2, 4) and so on. Candidate 2 found 9 options including (3, 3, 3) but omitted the tenth (3, 2, 4).
- (ii) The probability distribution table was copied from the question paper. Candidate 1 had four correct solutions, whereas candidate 2 missed many of the options and only had one correct solution.
- (iii) Candidate 1 realised that they had to find P (product of the 3 scores is 16) and found it correctly but could not remember the definition of independence. Candidate 2 could not make any headway in this last part of the question.